Page 184 - 201906
P. 184

·1190·                            精细化工   FINE CHEMICALS                                  第 36 卷

            的两个半圆以及低频区的直线组成,分别对应电极                             [4]   Ng S H, Wang J Z, Wexler D, et al. Amorphous carbon-coated silicon
            材料表面形成的固体电解质界面膜的阻抗(R SEI),充                            nanocomposites: A low-temperature synthesis via spray pyrolysis and
                                                                   their application as high-capacity anodes for lithium-ion batteries[J].
            放电过程中锂离子在电极材料中的电荷转移阻抗                                  Journal of Physical Chemistry C, 2007, 111: 11131-11138.
                                                       [19]
            (R ct),以及锂离子扩散过程的 Warburg 阻抗(W o) 。                [5]   Li M, Hou X, Sha Y, et al. Facile spray-drying/pyrolysis synthesis of
                                                                   core–shell  structure  graphite/silicon-porous  carbon  composite  as  a
            采用内嵌图中的等效电路,阻抗参数拟合结果见表
                                                                   superior  anode  for  Li-ion  batteries[J].  Journal  of  Power  Sources,
            2。可以看出,Si/VGCF-3 电极具有最低的界面阻抗                           2014, 248(2): 721-728.
            和电荷转移阻抗,该结果与倍率性能分析结果相符,                            [6]   Chang  J,  Huang  X,  Zhou  G,  et al.  Multilayered  Si  nanoparticle/
                                                                   reduced  graphene  oxide  hybrid  as  a  high-performance  lithium-ion
            表明 Si/VGCF-3 电极的结构和电导优势有效地改善                           battery anode[J]. Advanced Materials, 2014, 26(5): 758-764.
            了材料的电化学性能。                                         [7]   Fu  K,  Xue  L,  Yildiz  O,  et al.  Effect  of  CVD  carbon  coatings  on
                                                                   Si@CNF  composite  as  anode  for  lithium-ion  batteries[J].  Nano
                      表 2    硅碳复合电极的电化学参数                          Energy, 2013, 2(5): 976-986.
                   Table 2    Fitting results of the four samples   [8]   Feng K, Ahn W, Lui G, et al. Implementing an in-situ carbon network
                                                                   in  Si/reduced  graphene  oxide  for  high  performance  lithium-ion
              电极样品        R S/Ω   R SEI/Ω   R ct/Ω   W o/(Ω·s –1/2 )  battery anodes[J]. Nano Energy, 2016, 19: 187-197.
              Si/Super P   1.208   41.29   59.08    91.42      [9]   Yao Jinhuan (姚金环), Xie Zhiping (谢志平), Yin Zhoulan (尹周澜),
                                                                   et al. Preparation and lithium storage performance of V 2O 5/graphene
                Si/AB     1.582   45.79    62.42   106.60
                                                                   composite  electrode  material[J].  Fine Chemicals  (精细化工),  2018,
              Si/BP2000   1.787   54.61   159.50   114.30          35(5): 813-856.
              Si/VGCF-3   1.581   30.17    22.16    51.07      [10]  Tao H C, Fan L Z, Mei Y, et al. Self-supporting Si/reduced graphene
                                                                   oxide  nanocomposite  films  as  anode  for  lithium  ion  batteries[J].
                                                                   Electrochemistry Communications, 2011, 13(12): 1332-1335.
            3   结论                                             [11]  Agyeman D A, Song K, Lee G, et al. Carbon-coated Si nanoparticles
                                                                   anchored  between  reduced  graphene  oxides  as  an  extremely
                                                                   reversible  anode  material  for  high  energy-density  Li-ion  battery[J].
                 采用易工业化生产的液相法制备了硅与气相生                              Advanced Energy Materials, 2016, 6(20): 1600904-1600913.
            长碳纤维复合的材料(Si/VGCF)。将其作为锂离子                         [12]  Xu Y, Zhu Y, Han F, et al. 3D Si/C fiber paper electrodes fabricated
            电池的负极材料,当 m(Si)∶m(VGCF)为 1∶0.5 时,                      using  a  combined  electrospray/electrospinning  technique  for  Li-ion
                                                                   batteries[J].  Advanced  Energy  Materials,  2015,  5(1):  1400753-
            Si/VGCF 复合电极在 500 mA/g 的电流密度下,100                      1400759.
            次充放电循环后可逆容量为 1470 mA·h/g,具有较好                      [13]  Deng fei (邓飞), Zeng Xierong (曾燮榕), Zou Jizhao (邹继兆), et al.
                                                                   Effects  of  preparation  temperature  on  pyrolytic  carbon  coated
            的比容量和电化学稳定性。SEM、TEM 和 BET 孔
                                                                   LiFePO 4/vapor-grown  carbon  fiber  (PCLFP/VGCF)  composite
            结构分析表明,Si/VGCF 复合材料具有的多级框架                             cathode material[J]. Journal of Inorganic Materials (无机材料学报),
            结构含有丰富的电子和离子传输通道;与常用颗粒                                 2011, 26(11): 1141-1146.
                                                               [14]  Hosono  E,  Wang  Y,  Kida  N,  et al.  Synthesis  of  triaxial  LiFePO 4
            状碳材相比,Si/VGCF 较好的孔结构缓解了 Si 粒子
                                                                   nanowire with a VGCF core column and a carbon shell through the
            在嵌/脱锂过程中的体积效应。VGCF 在电导和结构                              electrospinning  method[J].  ACS  Applied  Materials  &  Interfaces,
            两方面的双功能作用对复合电极优异的电化学稳定                                 2010, 2(1): 212-218.
                                                               [15]  Lee  W  J,  Hwang  T  H,  Jin  O  H,  et al.  N-doped  graphitic
            性起到了重要作用。                                              self-encapsulation for high performance silicon anodes in lithium-ion
                                                                   batteries[J]. Energy & Environmental Science, 2014, 7(2): 621-626.
            参考文献:                                              [16]  Luo  Z,  Xiao  Q,  Lei  G,  et al.  Si  nanoparticles/graphene  composite
            [1]   Xu Q, Li J, Sun J, et al. Watermelon-inspired Si/C microspheres with   membrane  for  high  performance  silicon  anode  in  lithium  ion
                 hierarchical  buffer  structures  for  densely  compacted  lithium-ion   batteries[J]. Carbon, 2016, 98: 373-380.
                 battery  anodes[J].  Advanced  Energy  Materials,  2017,  7:  1601481-   [17]  Li  Y,  Liu  W,  Long  Z,  et al.  Si@C  microsphere  composite  with
                 1601486.                                          multiple  buffer  structures  for  high-performance  lithium-ion  battery
            [2]   Yang Xiaowu (杨晓武), Yang Rui (杨蕊), Qiu Liewei (秋列维), et   anodes[J]. European Journal of Chemistry, 2018, 24: 12912-12919.
                 al. Application of double layer structure Si/PPy composite anode in   [18]  Zhou  X,  Liu  Y,  Du  C,  et al.  Polyaniline-encapsulated  silicon  on
                 lithium-ion  batteries[J].  Fine  Chemicals  (精细化工),  2018,  35(8):   three-dimensional   carbon   nanotubes   foam   with   enhanced
                 1376-1388.                                        electrochemical  performance  for  lithium-ion  batteries[J].  Journal of
            [3]   Bai  Xuejun  (白雪君), Liu Chan  (刘婵),  Hou  Min  (侯敏),  et al.   Power Sources, 2018, 381: 156-163.
                 Silicon/CNTs/graphene free-standing anode material for lithium-ion   [19]  Xu T, Wang D, Qiu P, et al. In situ synthesis of porous Si dispersed in
                 battery[J].  Journal  of  Inorganic  Materials(无机材料学报),  2017,   carbon  nanotube  intertwined  expanded  graphite  for  high-energy
                 32(7): 705-712.                                   lithium-ion batteries[J]. Nanoscale, 2018, 10: 16638-16644.
   179   180   181   182   183   184   185   186   187   188   189