Page 184 - 201906
P. 184
·1190· 精细化工 FINE CHEMICALS 第 36 卷
的两个半圆以及低频区的直线组成,分别对应电极 [4] Ng S H, Wang J Z, Wexler D, et al. Amorphous carbon-coated silicon
材料表面形成的固体电解质界面膜的阻抗(R SEI),充 nanocomposites: A low-temperature synthesis via spray pyrolysis and
their application as high-capacity anodes for lithium-ion batteries[J].
放电过程中锂离子在电极材料中的电荷转移阻抗 Journal of Physical Chemistry C, 2007, 111: 11131-11138.
[19]
(R ct),以及锂离子扩散过程的 Warburg 阻抗(W o) 。 [5] Li M, Hou X, Sha Y, et al. Facile spray-drying/pyrolysis synthesis of
core–shell structure graphite/silicon-porous carbon composite as a
采用内嵌图中的等效电路,阻抗参数拟合结果见表
superior anode for Li-ion batteries[J]. Journal of Power Sources,
2。可以看出,Si/VGCF-3 电极具有最低的界面阻抗 2014, 248(2): 721-728.
和电荷转移阻抗,该结果与倍率性能分析结果相符, [6] Chang J, Huang X, Zhou G, et al. Multilayered Si nanoparticle/
reduced graphene oxide hybrid as a high-performance lithium-ion
表明 Si/VGCF-3 电极的结构和电导优势有效地改善 battery anode[J]. Advanced Materials, 2014, 26(5): 758-764.
了材料的电化学性能。 [7] Fu K, Xue L, Yildiz O, et al. Effect of CVD carbon coatings on
Si@CNF composite as anode for lithium-ion batteries[J]. Nano
表 2 硅碳复合电极的电化学参数 Energy, 2013, 2(5): 976-986.
Table 2 Fitting results of the four samples [8] Feng K, Ahn W, Lui G, et al. Implementing an in-situ carbon network
in Si/reduced graphene oxide for high performance lithium-ion
电极样品 R S/Ω R SEI/Ω R ct/Ω W o/(Ω·s –1/2 ) battery anodes[J]. Nano Energy, 2016, 19: 187-197.
Si/Super P 1.208 41.29 59.08 91.42 [9] Yao Jinhuan (姚金环), Xie Zhiping (谢志平), Yin Zhoulan (尹周澜),
et al. Preparation and lithium storage performance of V 2O 5/graphene
Si/AB 1.582 45.79 62.42 106.60
composite electrode material[J]. Fine Chemicals (精细化工), 2018,
Si/BP2000 1.787 54.61 159.50 114.30 35(5): 813-856.
Si/VGCF-3 1.581 30.17 22.16 51.07 [10] Tao H C, Fan L Z, Mei Y, et al. Self-supporting Si/reduced graphene
oxide nanocomposite films as anode for lithium ion batteries[J].
Electrochemistry Communications, 2011, 13(12): 1332-1335.
3 结论 [11] Agyeman D A, Song K, Lee G, et al. Carbon-coated Si nanoparticles
anchored between reduced graphene oxides as an extremely
reversible anode material for high energy-density Li-ion battery[J].
采用易工业化生产的液相法制备了硅与气相生 Advanced Energy Materials, 2016, 6(20): 1600904-1600913.
长碳纤维复合的材料(Si/VGCF)。将其作为锂离子 [12] Xu Y, Zhu Y, Han F, et al. 3D Si/C fiber paper electrodes fabricated
电池的负极材料,当 m(Si)∶m(VGCF)为 1∶0.5 时, using a combined electrospray/electrospinning technique for Li-ion
batteries[J]. Advanced Energy Materials, 2015, 5(1): 1400753-
Si/VGCF 复合电极在 500 mA/g 的电流密度下,100 1400759.
次充放电循环后可逆容量为 1470 mA·h/g,具有较好 [13] Deng fei (邓飞), Zeng Xierong (曾燮榕), Zou Jizhao (邹继兆), et al.
Effects of preparation temperature on pyrolytic carbon coated
的比容量和电化学稳定性。SEM、TEM 和 BET 孔
LiFePO 4/vapor-grown carbon fiber (PCLFP/VGCF) composite
结构分析表明,Si/VGCF 复合材料具有的多级框架 cathode material[J]. Journal of Inorganic Materials (无机材料学报),
结构含有丰富的电子和离子传输通道;与常用颗粒 2011, 26(11): 1141-1146.
[14] Hosono E, Wang Y, Kida N, et al. Synthesis of triaxial LiFePO 4
状碳材相比,Si/VGCF 较好的孔结构缓解了 Si 粒子
nanowire with a VGCF core column and a carbon shell through the
在嵌/脱锂过程中的体积效应。VGCF 在电导和结构 electrospinning method[J]. ACS Applied Materials & Interfaces,
两方面的双功能作用对复合电极优异的电化学稳定 2010, 2(1): 212-218.
[15] Lee W J, Hwang T H, Jin O H, et al. N-doped graphitic
性起到了重要作用。 self-encapsulation for high performance silicon anodes in lithium-ion
batteries[J]. Energy & Environmental Science, 2014, 7(2): 621-626.
参考文献: [16] Luo Z, Xiao Q, Lei G, et al. Si nanoparticles/graphene composite
[1] Xu Q, Li J, Sun J, et al. Watermelon-inspired Si/C microspheres with membrane for high performance silicon anode in lithium ion
hierarchical buffer structures for densely compacted lithium-ion batteries[J]. Carbon, 2016, 98: 373-380.
battery anodes[J]. Advanced Energy Materials, 2017, 7: 1601481- [17] Li Y, Liu W, Long Z, et al. Si@C microsphere composite with
1601486. multiple buffer structures for high-performance lithium-ion battery
[2] Yang Xiaowu (杨晓武), Yang Rui (杨蕊), Qiu Liewei (秋列维), et anodes[J]. European Journal of Chemistry, 2018, 24: 12912-12919.
al. Application of double layer structure Si/PPy composite anode in [18] Zhou X, Liu Y, Du C, et al. Polyaniline-encapsulated silicon on
lithium-ion batteries[J]. Fine Chemicals (精细化工), 2018, 35(8): three-dimensional carbon nanotubes foam with enhanced
1376-1388. electrochemical performance for lithium-ion batteries[J]. Journal of
[3] Bai Xuejun (白雪君), Liu Chan (刘婵), Hou Min (侯敏), et al. Power Sources, 2018, 381: 156-163.
Silicon/CNTs/graphene free-standing anode material for lithium-ion [19] Xu T, Wang D, Qiu P, et al. In situ synthesis of porous Si dispersed in
battery[J]. Journal of Inorganic Materials(无机材料学报), 2017, carbon nanotube intertwined expanded graphite for high-energy
32(7): 705-712. lithium-ion batteries[J]. Nanoscale, 2018, 10: 16638-16644.