Page 55 - 201906
P. 55
3+
第 6 期 延 永,等: 罗丹明 B 衍生物荧光探针的合成及其对 Fe 的检测 ·1061·
物质的量比 1∶1 的形式结合,以一种较稳定的形态 vitamin A or B-vitamin status in obese women in India[J]. European
3+
存在于体系中,Fe 与罗丹明母环结合后,不会再 Journal of Nutrition, 2016, 55(8): 2411-2421.
[10] Pieter M, Frederik V, Petra N, et al. Impact of iron deficiency on
与探针分子作用。 response to and remodeling after cardiac resynchronization
therapy[J]. American Journal of Cardiology, 2017, 119(1): 65-70.
参考文献: [11] Jiang Y C, Sun Y Y, Gong W L, et al. Effects of iron owerload on
growth and intestinal mucosa in rats[J]. International Journal of
[1] Hua Z Q, Wang X M, Feng Y C, et al. Sulfonyl rhodamine hydrazide:
Science, 2017, 3(3): 57-61.
A sensitive and selective chromogenic and fluorescent
[12] Peng Mengjiao (彭梦姣). Synthesis and properties of novel hybrid
chemodosimeter for copper ion in aqueous media[J]. Dyes and
fluorescent sensor for Fe(Ⅲ) detection[J]. Chemistry (化学通报),
Pigments, 2011, 88(3): 257-261.
2018, 81(5): 450-455.
[2] Lunvongsa S, Oshima M, Motomizu S. Determination of total and
[13] Dujols V, Ford F, Czarnik A W. A long-wavelength fluorescent
dissolved amount of iron in water samples using catalytic
chemodosimeter selective for Cu(Ⅱ) ion in water[J]. Journal of the
spectrophotometric flow injection analysis[J]. Talanta, 2006, 68(3):
American Chemical Society, 1997, 119(31): 7386-7387.
969-973.
[14] Zhang R, Yan F, Huang Y, et al. Rhodamine-based ratiometric
[3] Cabon J Y, Giamarchi P, Bihan A L. Determination of iron in
fluorescent probes based on excitation energy transfer mechanisms:
seawater by electrothermal atomic absorption spectrometry and
construction and applications in ratiometric sensing[J]. RSC
atomic fluorescence spectrometry: A comparative study[J]. Analytica
Advances, 2016, 6(56): 50732-50760.
Chimica Acta, 2010, 664(2): 114-120.
[15] Huang J H, Xua Y F, Qian X H. Rhodamine-based fluorescent off-on
[4] Huang Yi (黄怡),Yang Meipan (杨美盼),Zhang Weihong (张卫红),
3+
sensor for Fe in aqueous solution and in living cells: 8-
et al. The study of a highly selective rhodamine Schiff base probe for
3+
Fe [J]. Chemical Research and Application(化学研究与应用), aminoquinoline receptor and 2:1 binding[J]. Dalton Trans, 2014,
43(16): 5983-5989.
2018, 30(1): 88-94.
[5] Afshani J, Badiei A, Jafari M, et al. A single optical sensor with high [16] Yang Y X, Gao W L, Sheng R L, et al. Rhodamine-based derivatives
2+
3+
−
sensitivity for detection of Fe and CN ions[J]. Journal of for Cu sensing: Spectroscopic studies, structure-recognition
Luminescence, 2016, 179(463): 463-468. relationships and its test strips[J]. Spectrochimica Acta, Part A:
[6] Qiao R, Xiong W Z, Bai C B, et al. A highly selective fluorescent Molecular and Biomolecular Spectroscopy, 2011, 81(1): 14-20.
chemosensor for Fe(Ⅲ) based on Rhodamine 6G dyes derivative[J]. [17] Wang S X, Meng X M, Zhu M Z. A naked-eye rhodamine-based
Supramolecular Chemistry, 2018, 30(1): 1-7. fluorescent probe for Fe(Ⅲ) and its application in living cells[J].
[7] Ow H, Larson D R, Srivastava M. Bright and stable core-shell Tetrahedron Letter, 2011, 52 (22): 2840-2843.
fluorescent silica nanoparticles[J]. Nano Lett, 2005, 5 (1): 113-117. [18] Wang C C, Zhang D, Huang X Y, et al. A fluorescence ratiometric
3+
[8] Nathaniel C L, Svetlana V P, Christian B. Squaramide hydroxamate chemosensor for Fe based on TBET and its application in living
based chemidosimeter responding to iron (Ⅲ) with a fluorescence cells[J]. Talanta, 2014, 128: 69-74.
intensity in-crease[J]. Inorg Chem, 2009, 48(3): 1173-1182. [19] Liu J F, Qian Y. A novel pyridylvinyl naphthalimide-rhodamine dye:
[9] Isabelle H A, Prashanth T, Beena B, et al. Increased risk of iron Synthesis, naked-eye visible and ratiometric chemodosimeter for
2+
3+
deficiency and reduced iron absorption but no difference in zinc, Hg /Fe [J]. Journal of Luminescence, 2017, 187: 782-790.
(上接第 1040 页) solution through molecular inclusion[J]. Energy & Fuels, 2018, 32
(9): 9280-9288.
[3] Wu J L, Tian K, Wang J L, et al. Adsorption of uranium (Ⅵ) by [11] Wang G H, Yang L L, Wu F, et al. Carboxymethyl-β-cyclodextrin
amidoxime modified multi-walled carbon nanotubes[J]. Progress in enhanced TiO 2 removal of Acid Red R and lead ions in suspended
Nuclear Energy, 2018, 106: 79-86. solutions[J]. Journal of Chemical Technology and Biotechnology,
[4] Buffa A, Mandler D. Adsorption and detection of organic pollutants 2014, 89(2): 297-304.
by fixed bed carbon nano-tube electrochemical membrane[J]. [12] Safajou H, Khojasteh H, Salavati-Niasari M, et al. Enhanced
Chemical Engineering Journal, 2019, 359: 130-137. photocatalytic degradation of dyes over graphene/Pd/TiO 2
[5] Zhang W, Lu Y, Sun H W, et al. Effects of multiwalled carbon nanocomposites: TiO 2 nanowires versus TiO 2 nanoparticles[J].
nanotubes on pyrene adsorption and desorption in soils: The role of Journal of Colloid and Interface Science, 2017, 498: 423-432.
soil constituents[J]. Chemosphere, 2019, 221: 203-211. [13] Wang X J, Li X J, Luo C N, et al. Ultrasensitive molecularly
[6] Kuila T, Bose S, Mishra A K, et al. Chemical functionalization of imprinted electrochemical sensor based on magnetism graphene
graphene and its applications[J]. Progress in Materials Science, 2012, oxide/-cyclodextrin/aunanoparticles composites for chrysoidine
57(7): 1061-1105. analysis[J]. Electrochimica Acta, 2014, 130: 519-525.
[7] Liu X, Yu J G, Wageh S, et al. Graphene in photocatalysis: A [14] Liang R P, Liu C M, Meng X Y, et al. A novel open-tubular capillary
review[J]. Small, 2016, 12: 6640-6696. electrochromatography using -cyclodextrin functionalized graphene
[8] Sikder M T, Rahman M M, Jakariya M, et al. Remediation of water oxide-magnetic nanocomposites as tunable stationary phase[J].
pollution with native cyclodextrins and modified cyclodextrins: A Journal of Chromatography A, 2012, 1266: 95-102.
comparative overview and perspectives[J]. Chemical Engineering [15] Gong J L, Wang X Y, Zeng G M, et al. Copper (Ⅱ) removal by
Journal, 2019, 355 (48): 920-941. pectin-iron oxide magnetic nanocomposite adsorbent[J]. Chemical
[9] Xie J H, Xu Y, Shishir M R, et al. Green extraction of mulberry Engineering Journal, 2012, 185/186: 100-107.
anthocyanin with improved stability using beta-cyclodextrin[J]. Journal [16] Zheng Shaojie (郑少杰), Zhang Xiuju (张秀菊), Lin Zhidan (林志
of the Science of Food and Agriculture, 2019, 99(5): 2494-2503. 丹). Preparation of β-cyclodextrin microsphere derivative and its
[10] Duan Z B, Bu T T, Bian H, et al. Effective removal of phenylamine, application in printing and dyeing wastewater treatment[J]. Industrial
quinoline, and indole from light oil by beta-cyclodextrin aqueous Water Treatment (工业水处理), 2010, 30(10): 33-35.