Page 55 - 201906
P. 55

3+
             第 6 期                  延   永,等:  罗丹明 B 衍生物荧光探针的合成及其对 Fe 的检测                             ·1061·

            物质的量比 1∶1 的形式结合,以一种较稳定的形态                              vitamin A or B-vitamin status in obese women in India[J]. European
                             3+
            存在于体系中,Fe 与罗丹明母环结合后,不会再                                Journal of Nutrition, 2016, 55(8): 2411-2421.
                                                               [10]  Pieter  M,  Frederik  V,  Petra  N,  et al.  Impact  of  iron  deficiency  on
            与探针分子作用。                                               response  to  and  remodeling  after  cardiac  resynchronization
                                                                   therapy[J]. American Journal of Cardiology, 2017, 119(1): 65-70.
            参考文献:                                              [11]  Jiang Y C, Sun Y Y, Gong W L, et al. Effects of iron owerload on
                                                                   growth  and  intestinal  mucosa  in  rats[J].  International  Journal  of
            [1]   Hua Z Q, Wang X M, Feng Y C, et al. Sulfonyl rhodamine hydrazide:
                                                                   Science, 2017, 3(3): 57-61.
                 A   sensitive   and   selective   chromogenic   and   fluorescent
                                                               [12]  Peng  Mengjiao  (彭梦姣).  Synthesis  and  properties  of  novel  hybrid
                 chemodosimeter  for  copper  ion  in  aqueous  media[J].  Dyes  and
                                                                   fluorescent  sensor  for  Fe(Ⅲ)  detection[J].  Chemistry  (化学通报),
                 Pigments, 2011, 88(3): 257-261.
                                                                   2018, 81(5): 450-455.
            [2]   Lunvongsa  S,  Oshima  M,  Motomizu  S.  Determination  of  total  and
                                                               [13]  Dujols  V,  Ford  F,  Czarnik  A  W.  A  long-wavelength  fluorescent
                 dissolved  amount  of  iron  in  water  samples  using  catalytic
                                                                   chemodosimeter selective for Cu(Ⅱ) ion in water[J]. Journal of the
                 spectrophotometric  flow  injection  analysis[J].  Talanta,  2006,  68(3):
                                                                   American Chemical Society, 1997, 119(31): 7386-7387.
                 969-973.
                                                               [14]  Zhang  R,  Yan  F,  Huang  Y,  et al.  Rhodamine-based  ratiometric
            [3]   Cabon  J  Y,  Giamarchi  P,  Bihan  A  L.  Determination  of  iron  in
                                                                   fluorescent probes based on excitation energy transfer mechanisms:
                 seawater  by  electrothermal  atomic  absorption  spectrometry  and
                                                                   construction  and  applications  in  ratiometric  sensing[J].  RSC
                 atomic fluorescence spectrometry: A comparative study[J]. Analytica
                                                                   Advances, 2016, 6(56): 50732-50760.
                 Chimica Acta, 2010, 664(2): 114-120.
                                                               [15]  Huang J H, Xua Y F, Qian X H. Rhodamine-based fluorescent off-on
            [4]   Huang Yi (黄怡),Yang Meipan (杨美盼),Zhang Weihong (张卫红),
                                                                            3+
                                                                   sensor  for  Fe   in  aqueous  solution  and  in  living  cells:  8-
                 et al. The study of a highly selective rhodamine Schiff base probe for
                  3+
                 Fe   [J].  Chemical  Research  and  Application(化学研究与应用),   aminoquinoline  receptor  and  2:1  binding[J].  Dalton  Trans,  2014,
                                                                   43(16): 5983-5989.
                 2018, 30(1): 88-94.
            [5]   Afshani J, Badiei A, Jafari M, et al. A single optical sensor with high   [16]  Yang Y X, Gao W L, Sheng R L, et al. Rhodamine-based derivatives
                                                                        2+
                                     3+
                                            −
                 sensitivity  for  detection  of  Fe  and CN   ions[J].  Journal  of   for  Cu   sensing:  Spectroscopic  studies,  structure-recognition
                 Luminescence, 2016, 179(463): 463-468.            relationships  and  its  test  strips[J].  Spectrochimica  Acta,  Part A:
            [6]   Qiao R, Xiong W Z, Bai C B, et al. A highly selective fluorescent   Molecular and Biomolecular Spectroscopy, 2011, 81(1): 14-20.
                 chemosensor for Fe(Ⅲ) based on Rhodamine 6G dyes derivative[J].   [17]  Wang  S  X,  Meng  X  M,  Zhu  M  Z.  A  naked-eye  rhodamine-based
                 Supramolecular Chemistry, 2018, 30(1): 1-7.       fluorescent  probe  for  Fe(Ⅲ)  and  its  application  in  living  cells[J].
            [7]   Ow  H,  Larson  D  R,  Srivastava  M.  Bright  and  stable  core-shell   Tetrahedron Letter, 2011, 52 (22): 2840-2843.
                 fluorescent silica nanoparticles[J]. Nano Lett, 2005, 5 (1): 113-117.     [18]  Wang C C, Zhang D, Huang X Y, et al. A fluorescence ratiometric
                                                                               3+
            [8]   Nathaniel C L, Svetlana V P, Christian B. Squaramide hydroxamate   chemosensor  for  Fe   based  on  TBET  and  its  application  in  living
                 based  chemidosimeter  responding  to  iron  (Ⅲ)  with  a  fluorescence   cells[J]. Talanta, 2014, 128: 69-74.
                 intensity in-crease[J]. Inorg Chem, 2009, 48(3): 1173-1182.     [19]  Liu J F, Qian Y. A novel pyridylvinyl naphthalimide-rhodamine dye:
            [9]   Isabelle  H  A,  Prashanth  T,  Beena  B,  et al.  Increased  risk  of  iron   Synthesis,  naked-eye  visible  and  ratiometric  chemodosimeter  for
                                                                     2+
                                                                        3+
                 deficiency and reduced iron absorption but no difference in zinc,     Hg /Fe [J]. Journal of Luminescence, 2017, 187: 782-790.

            (上接第 1040 页)                                           solution  through  molecular  inclusion[J].  Energy  &  Fuels,  2018,  32
                                                                   (9): 9280-9288.
            [3]   Wu J L,  Tian K,  Wang  J  L,  et al.  Adsorption  of  uranium  (Ⅵ)  by   [11]  Wang  G  H,  Yang  L  L,  Wu  F,  et al.  Carboxymethyl-β-cyclodextrin
                 amidoxime  modified  multi-walled  carbon nanotubes[J].  Progress  in   enhanced TiO 2 removal of Acid Red R and lead ions in suspended
                 Nuclear Energy, 2018, 106: 79-86.                 solutions[J].  Journal  of  Chemical  Technology  and  Biotechnology,
            [4]   Buffa A, Mandler D. Adsorption and detection of organic pollutants   2014, 89(2): 297-304.
                 by  fixed  bed  carbon  nano-tube  electrochemical  membrane[J].   [12]  Safajou  H,  Khojasteh  H,  Salavati-Niasari  M,  et al.  Enhanced
                 Chemical Engineering Journal, 2019, 359: 130-137.     photocatalytic  degradation  of  dyes  over  graphene/Pd/TiO 2
            [5]   Zhang  W,  Lu  Y,  Sun  H  W,  et al.  Effects  of  multiwalled  carbon   nanocomposites:  TiO 2  nanowires  versus  TiO 2  nanoparticles[J].
                 nanotubes on pyrene adsorption and desorption in soils: The role of   Journal of Colloid and Interface Science, 2017, 498: 423-432.
                 soil constituents[J]. Chemosphere, 2019, 221: 203-211.     [13]  Wang  X  J,  Li  X  J,  Luo  C  N,  et al.  Ultrasensitive  molecularly
            [6]   Kuila T,  Bose S,  Mishra A K,  et al.  Chemical  functionalization  of   imprinted  electrochemical  sensor  based  on  magnetism  graphene
                 graphene and its applications[J]. Progress in Materials Science, 2012,   oxide/-cyclodextrin/aunanoparticles  composites  for  chrysoidine
                 57(7): 1061-1105.                                 analysis[J]. Electrochimica Acta, 2014, 130: 519-525.
            [7]   Liu  X,  Yu  J  G,  Wageh  S,  et al.  Graphene  in  photocatalysis:  A   [14]  Liang R P, Liu C M, Meng X Y, et al. A novel open-tubular capillary
                 review[J]. Small, 2016, 12: 6640-6696.            electrochromatography using -cyclodextrin functionalized graphene
            [8]   Sikder M T, Rahman M M, Jakariya M, et al. Remediation of water   oxide-magnetic  nanocomposites  as  tunable  stationary  phase[J].
                 pollution  with  native  cyclodextrins  and  modified  cyclodextrins: A   Journal of Chromatography A, 2012, 1266: 95-102.
                 comparative  overview  and  perspectives[J].  Chemical  Engineering   [15]  Gong  J  L,  Wang  X  Y,  Zeng  G  M,  et al.  Copper  (Ⅱ)  removal  by
                 Journal, 2019, 355 (48): 920-941.                 pectin-iron  oxide  magnetic  nanocomposite  adsorbent[J].  Chemical
            [9]   Xie  J  H, Xu  Y, Shishir M R,  et al.  Green  extraction  of  mulberry   Engineering Journal, 2012, 185/186: 100-107.
                 anthocyanin with improved stability using beta-cyclodextrin[J]. Journal   [16]  Zheng Shaojie (郑少杰), Zhang Xiuju (张秀菊), Lin Zhidan (林志
                 of the Science of Food and Agriculture, 2019, 99(5): 2494-2503.    丹).  Preparation  of  β-cyclodextrin  microsphere  derivative  and  its
            [10]  Duan Z B, Bu T T, Bian H, et al. Effective removal of phenylamine,   application in printing and dyeing wastewater treatment[J]. Industrial
                 quinoline,  and  indole  from  light  oil  by  beta-cyclodextrin  aqueous   Water Treatment (工业水处理), 2010, 30(10): 33-35.
   50   51   52   53   54   55   56   57   58   59   60