Page 62 - 201906
P. 62
·1068· 精细化工 FINE CHEMICALS 第 36 卷
碳点修饰后,可见光吸收增强,导电性迅速提高, photocatalytic activity for NO oxidation[J]. Applied Catalysis B:
由此加快了光生载流子的分离和传输,产氢性能大 Environmental, 2016, 182(5): 587-597.
[10] Dong Yingge (董英鸽), Yang Jinlong (杨金龙), Ding Yanli (丁艳
幅度提高。如图 11b 所示,TiO 2 纳米片前驱体的量 丽), et al. Photocatalytic property on TiO 2@ amino-functional carbon
子效率为 5.8%,经过碳点(质量分数为 2%)修饰 quantum dots[J]. Journal of Functional Materials (功能材料), 2015,
后,量子效率达到 9.6%,远远高于 TiO 2 纳米片的 46(6): 6086-6090.
[11] Shi Xin (石鑫), XU Jianping (徐建萍), Li Linlin (李霖霖), et al.
产氢速率。 Photoelectrochemical properties of TiO 2 nanorod arrays loaded with
carbon quantum dots[J]. Chinese Journal of Luminescience (发光学
3 结论 报), 2015, 36(8): 898-905.
[12] Zhang Qianxin (张钱新), Wang Fengliang (王枫亮), Xie Zhijie (谢
(1)将 CDots 负载到 TiO 2 的(001)晶面,缩 治杰), et al. Photocatalytic degradation mechanism of mefenamic
acid by N-doped carbon quantum dots loaded on TiO 2[J]. China
短了样品的禁带宽度,价带顶上移了 0.27 eV,TiO 2
Environmental Science (中国环境科学), 2017, 37(8): 2930-2940.
纳米片的禁带宽度由 3.12 eV 减小到 2.85 eV。加快 [13] Liu J, Liu Y, Liu N, et al. Metal-free efficient photocatalyst for stable
了光生载流子的迁移,CDots-(001)TiO 2 纳米片的光 visible water splitting via a two-electron pathway[J]. Science, 2015,
347(6225): 970-974.
电流密度约为 TiO 2 的 4 倍。
[14] Han X, Kuang Q, Jin M, et al. Synthesis of titania nanosheets with a
(2)在模拟太阳光照射下,CDots-(001)TiO 2 纳 high percentage of exposed (001) facets and related photocatalytic
米片(碳点负载量为 2%)的光催化产氢速率达 5859 properties[J]. Journal of American Chemical Society, 2009, 131(9):
μmol/(h·g),量子效率达 9.6%,远远高于 TiO 2 纳米 3152-3153.
[15] Ming H, Ma Z, Liu Y, et al. Large scale electrochemical synthesis of
片的产氢速率。此外,CDots-(001)TiO 2 纳米片具有 high quality carbon nanodots and their photocatalytic property[J].
稳定的光催化活性,经过 20 h 的循环反应,样品的 Dalton Transactions, 2012, 41(31): 9526-9531.
产氢速率不变。 [16] Che W, Cheng W, Yao T, et al. Fast photoelectron transfer in
(Cring)-C 3N 4 plane heterostructural nanosheets for overall water
(3)这种将 Cdots 负载到催化剂特定晶面的研 splitting[J]. Journal of American Chemical Society, 2017, 139(8):
究从晶面角度为高效光催化剂的开发提供了一定的 3021-3026.
理论依据。 [17] Wu X, Yin Shu, Dong Q, et al. Photocatalytic properties of Nd and C
codoped TiO 2 with the whole range of visible light absorption[J].
参考文献: Journal of Physical Chemistry C, 2013, 117: 8345-8352.
[18] Di J, Xia J, Ji M, et al. Nitrogen-doped carbon quantum dots/BiOBr
[1] Ding Z, Hu H, Xu J, et al. Hierarchical spheres assembled from large ultrathin nanosheets: In situ strong coupling and improved molecular
ultrathin anatase TiO 2 nanosheets for photocatalytic hydrogen oxygen activation ability under visible light irradiation[J]. ACS
evolution from water splitting[J]. International Journal of Hydrogen Sustainable Chemistry & Engineering, 2016, 4(1): 136-146.
Energy, 2018, 43(29): 13190-13199. [19] Jagadale T C, Takale S P, Sonawane R S, et al. N-doped TiO 2
[2] Xia X, Peng S, Bao Y, et al. Control of interface between anatase nanoparticle based visible light photocatalyst by modified peroxide
TiO 2 nanoparticles and rutile TiO 2 nanorods for efficient photocatalytic H 2
generation[J]. Journal of Power Sources, 2018, 376: 11-17. sol-gel method[J]. Journal of Physical Chemistry C, 2008, 112(37):
[3] Tian Yu (田宇),Zheng Wei (郑威),He Guiwei (何贵伟), et al. 14595-14602.
2+
Preparation of Sn doped TiO 2 by one-step hydrothermal method [20] Shah M, Park A, Zhang K, et al. Green synthesis of biphasic
and its photocatalytic performance for hydrogen production[J]. Fine TiO 2-reduced graphene oxide nanocomposites with highly enhanced
Chemicals (精细化工), 2018, 7(35): 1182-1187. photocatalytic activity[J]. ACS Applied Material Interfaces, 2012, 4:
[4] Zhang A, Wang W, Chen J, et al. Epitaxial facet junctions on TiO 2 3893-3901.
single crystals for efficient photocatalytic water splitting[J]. Energy [21] Wang R, Wu Q, Lu Yun, et al. Preparation of nitrogen-doped
& Environmental Science, 2018, 11: 1444-1448. TiO 2/graphene nanohybrids and application as counter electrode for
[5] Yu J, Low J, Xiao W, et al. Enhanced photocatalytic CO 2 reduction dye-sensitized solar cells[J]. ACS Applied Material Interfaces, 2014,
activity of anatase TiO 2 by coexposed {001} and {101} facets[J]. 6: 2118-2124.
Journal of American Chemical Society, 2014, 136(25): 8839-8842. [22] Zhang X, Wang F, Huang H, et al. Carbon quantum dot sensitized
[6] Zhang H, Zhou P, Chen Z, et al. Hydrogen-bond bridged water TiO 2 nanotube arrays for photoelectrochemical hydrogen generation
oxidation on {001} surfaces of anatase TiO 2[J]. Journal of Physical
under visible light[J]. Nanoscale, 2013, 5(6): 2274-2278.
Chemistry C, 2017, 121(4): 2251-2257. [23] Dong F, Guo S, Wang H Q, et al. Enhancement of the visible light
[7] Liu X, Dong G, Li S, et al. Direct observation of charge separation on photocatalytic activity of C-doped TiO 2 nanomaterials prepared by a
anatase TiO 2 crystals with selectively etched {001} facets[J]. Journal green synthetic approach[J]. Journal of Physical Chemistry C, 2011,
of American Chemical Society, 2016, 138(9): 2917-2920.
[8] Zhang J, Ma X, Zhang L, et al. Constructing a novel n-p-n dual 115(27): 13285-13292.
heterojunction between anatase TiO 2 nanosheets with coexposed [24] Chen X B, Burda C. The electronic origin of the visible-light
{101}, {001} facets and porous ZnS for enhancing photocatalytic absorption properties of C-, N- and S-doped TiO 2 anomaterials[J].
activity of TiO 2[J]. Journal of Physical Chemistry C, 2017, 121 (11): Journal of American Chemical Society, 2008, 130(15): 5018-5019.
6133-6140. [25] Li J, Cai L, Shang J, et al. Giant enhancement of internal electric
[9] Song X, Hu Y, Zheng M M, et al. Solvent-free in situ synthesis of field boosting bulk charge separation for photocatalysis[J]. Advanced
g-C 3N 4/{001} TiO 2 composite with enhanced UV- and visible-light Materials, 2016, 28(21): 4059-4064.