Page 62 - 201906
P. 62

·1068·                            精细化工   FINE CHEMICALS                                  第 36 卷

            碳点修饰后,可见光吸收增强,导电性迅速提高,                                 photocatalytic  activity  for  NO  oxidation[J].  Applied  Catalysis  B:
            由此加快了光生载流子的分离和传输,产氢性能大                                 Environmental, 2016, 182(5): 587-597.
                                                               [10]  Dong  Yingge  (董英鸽),  Yang  Jinlong  (杨金龙),  Ding  Yanli  (丁艳
            幅度提高。如图 11b 所示,TiO 2 纳米片前驱体的量                          丽), et al. Photocatalytic property on TiO 2@ amino-functional carbon
            子效率为 5.8%,经过碳点(质量分数为 2%)修饰                             quantum dots[J]. Journal of Functional Materials (功能材料), 2015,
            后,量子效率达到 9.6%,远远高于 TiO 2 纳米片的                          46(6): 6086-6090.
                                                               [11]  Shi  Xin  (石鑫),  XU  Jianping  (徐建萍),  Li  Linlin  (李霖霖),  et al.
            产氢速率。                                                  Photoelectrochemical properties of TiO 2 nanorod arrays loaded with
                                                                   carbon quantum dots[J]. Chinese Journal of Luminescience (发光学
            3   结论                                                 报), 2015, 36(8): 898-905.
                                                               [12]  Zhang Qianxin (张钱新), Wang Fengliang (王枫亮), Xie Zhijie (谢
                (1)将 CDots 负载到 TiO 2 的(001)晶面,缩                    治杰),  et al.  Photocatalytic  degradation  mechanism  of  mefenamic
                                                                   acid  by  N-doped  carbon  quantum  dots  loaded  on  TiO 2[J].  China
            短了样品的禁带宽度,价带顶上移了 0.27 eV,TiO 2
                                                                   Environmental Science (中国环境科学), 2017, 37(8): 2930-2940.
            纳米片的禁带宽度由 3.12 eV 减小到 2.85 eV。加快                   [13]  Liu J, Liu Y, Liu N, et al. Metal-free efficient photocatalyst for stable
            了光生载流子的迁移,CDots-(001)TiO 2 纳米片的光                       visible water splitting via a two-electron pathway[J]. Science, 2015,
                                                                   347(6225): 970-974.
            电流密度约为 TiO 2 的 4 倍。
                                                               [14]  Han X, Kuang Q, Jin M, et al. Synthesis of titania nanosheets with a
                (2)在模拟太阳光照射下,CDots-(001)TiO 2 纳                    high  percentage  of  exposed  (001)  facets  and  related  photocatalytic
            米片(碳点负载量为 2%)的光催化产氢速率达 5859                            properties[J]. Journal of American Chemical Society, 2009, 131(9):
            μmol/(h·g),量子效率达 9.6%,远远高于 TiO 2 纳米                    3152-3153.
                                                               [15]  Ming H, Ma Z, Liu Y, et al. Large scale electrochemical synthesis of
            片的产氢速率。此外,CDots-(001)TiO 2 纳米片具有                       high  quality  carbon  nanodots  and  their  photocatalytic  property[J].
            稳定的光催化活性,经过 20 h 的循环反应,样品的                             Dalton Transactions, 2012, 41(31): 9526-9531.
            产氢速率不变。                                            [16]  Che  W,  Cheng  W,  Yao  T,  et al.  Fast  photoelectron  transfer  in
                                                                   (Cring)-C 3N 4  plane  heterostructural  nanosheets  for  overall  water
                (3)这种将 Cdots 负载到催化剂特定晶面的研                          splitting[J].  Journal  of  American  Chemical  Society,  2017,  139(8):
            究从晶面角度为高效光催化剂的开发提供了一定的                                 3021-3026.
            理论依据。                                              [17]  Wu X, Yin Shu, Dong Q, et al. Photocatalytic properties of Nd and C
                                                                   codoped  TiO 2  with  the  whole  range  of  visible  light  absorption[J].
            参考文献:                                                  Journal of Physical Chemistry C, 2013, 117: 8345-8352.
                                                               [18]  Di J, Xia J, Ji M, et al. Nitrogen-doped carbon quantum dots/BiOBr
            [1]   Ding Z, Hu H, Xu J, et al. Hierarchical spheres assembled from large   ultrathin nanosheets: In situ strong coupling and improved molecular
                 ultrathin  anatase  TiO 2  nanosheets  for  photocatalytic  hydrogen   oxygen  activation  ability  under  visible  light  irradiation[J].  ACS
                 evolution from water splitting[J]. International Journal of Hydrogen   Sustainable Chemistry & Engineering, 2016, 4(1): 136-146.
                 Energy, 2018, 43(29): 13190-13199.            [19]  Jagadale  T  C,  Takale  S  P,  Sonawane  R  S,  et al.  N-doped  TiO 2
            [2]   Xia  X, Peng  S, Bao Y,  et al.  Control of  interface  between  anatase   nanoparticle based visible light photocatalyst by  modified peroxide
                 TiO 2 nanoparticles and rutile TiO 2 nanorods for efficient photocatalytic H 2
                 generation[J]. Journal of Power Sources, 2018, 376: 11-17.   sol-gel method[J]. Journal of Physical Chemistry C, 2008, 112(37):
            [3]   Tian  Yu  (田宇),Zheng  Wei  (郑威),He  Guiwei  (何贵伟),  et al.   14595-14602.
                            2+
                 Preparation  of  Sn  doped TiO 2  by  one-step  hydrothermal  method   [20]  Shah  M,  Park  A,  Zhang  K,  et al.  Green  synthesis  of  biphasic
                 and its photocatalytic performance for hydrogen production[J]. Fine   TiO 2-reduced graphene oxide nanocomposites with highly enhanced
                 Chemicals (精细化工), 2018, 7(35): 1182-1187.         photocatalytic activity[J]. ACS Applied Material Interfaces, 2012, 4:
            [4]   Zhang A, Wang W, Chen J, et al. Epitaxial facet junctions on TiO 2   3893-3901.
                 single crystals for efficient photocatalytic water splitting[J]. Energy   [21]  Wang  R,  Wu  Q,  Lu  Yun,  et al.  Preparation  of  nitrogen-doped
                 & Environmental Science, 2018, 11: 1444-1448.     TiO 2/graphene nanohybrids and application as counter electrode for
            [5]   Yu J, Low J, Xiao W, et al. Enhanced photocatalytic CO 2 reduction   dye-sensitized solar cells[J]. ACS Applied Material Interfaces, 2014,
                 activity  of  anatase  TiO 2  by  coexposed  {001}  and  {101}  facets[J].   6: 2118-2124.
                 Journal of American Chemical Society, 2014, 136(25): 8839-8842.   [22]  Zhang X, Wang F, Huang H, et al. Carbon quantum dot sensitized
            [6]   Zhang  H,  Zhou  P,  Chen  Z, et  al.  Hydrogen-bond  bridged  water   TiO 2 nanotube arrays for photoelectrochemical hydrogen generation
                 oxidation on {001} surfaces of anatase TiO 2[J]. Journal of Physical
                                                                   under visible light[J]. Nanoscale, 2013, 5(6): 2274-2278.
                 Chemistry C, 2017, 121(4): 2251-2257.         [23]  Dong F, Guo S, Wang H Q, et al. Enhancement of the visible light
            [7]   Liu X, Dong G, Li S, et al. Direct observation of charge separation on   photocatalytic activity of C-doped TiO 2 nanomaterials prepared by a
                 anatase TiO 2 crystals with selectively etched {001} facets[J]. Journal   green synthetic approach[J]. Journal of Physical Chemistry C, 2011,
                 of American Chemical Society, 2016, 138(9): 2917-2920.
            [8]   Zhang  J,  Ma  X,  Zhang  L,  et al.  Constructing  a  novel  n-p-n  dual   115(27): 13285-13292.
                 heterojunction  between  anatase  TiO 2  nanosheets  with  coexposed   [24]  Chen  X  B,  Burda  C.  The  electronic  origin  of  the  visible-light
                 {101},  {001}  facets  and  porous  ZnS  for  enhancing  photocatalytic   absorption  properties  of  C-,  N-  and  S-doped  TiO 2  anomaterials[J].
                 activity of TiO 2[J]. Journal of Physical Chemistry C, 2017, 121 (11):   Journal of American Chemical Society, 2008, 130(15): 5018-5019.
                 6133-6140.                                    [25]  Li  J,  Cai  L,  Shang  J,  et al.  Giant  enhancement  of  internal  electric
            [9]   Song X, Hu Y, Zheng M M, et al. Solvent-free in situ synthesis of   field boosting bulk charge separation for photocatalysis[J]. Advanced
                 g-C 3N 4/{001} TiO 2 composite with enhanced UV- and visible-light     Materials, 2016, 28(21): 4059-4064.
   57   58   59   60   61   62   63   64   65   66   67