Page 23 - 201907
P. 23

第 7 期                          张振清,等:  醇绿色催化氧化方法研究进展                                    ·1269·


            [39]  Abad A, Almela C, Corma A, et al. Efficient chemoselective alcohol   [57]  Mori  K,  Hara  T,  Mizugaki  T,  et al.  Hydroxyapatite-supported
                 oxidation  using  oxygen  as  oxidant.  Superior  performance  of  gold   palladium  nanoclusters:  A  highly  active  heterogeneous  catalyst  for
                 over palladium catalysts[J]. Tetrahedron, 2006, 62(28): 6666-6672.   selective  oxidation  of  alcohols  by  use  of  molecular  oxygen[J].
            [40]  Yang X, Wang X, Liang C, et al. Aerobic oxidation of alcohols over   Journal  of  the  American  Chemical  Society,  2004,  126(34):  10657-
                 Au/TiO 2: An insight on the promotion effect of water on the catalytic   10666.
                 activity  of  Au/TiO 2[J].  Catalysis  Communications,  2008,  9(13):   [58]  Pillai  U  R,  Sahle-Demessie  E.  Selective  oxidation  of  alcohols  by
                 2278-2281.                                        molecular  oxygen  over  a  Pd/MgO  catalyst  in  the  absence  of  any
            [41]  Tsukamoto  D,  Shiraishi  Y,  Sugano  Y,  et al.  Gold  nanoparticles   additives[J]. Green Chemistry, 2004, 6(3): 161-165.
                 located  at  the  interface  of  anatase/rutile  TiO 2  particles  as  active   [59]  Kakiuchi  N,  Maeda  Y,  Nishimura  T,  et al.  Pd(Ⅱ)-hydrotalcite-
                 plasmonic  photocatalysts  for  aerobic  oxidation[J].  Journal  of  the   catalyzed  oxidation  of  alcohols  to  aldehydes  and  ketones  using
                 American Chemical Society, 2012, 134(14): 6309-6315.   atmospheric pressure of air[J]. Journal of Organic Chemistry, 2001,
            [42]  Ishida T, Ogihara  Y, Ohashi H, et al. Base-free direct oxidation of   66(20): 6620-6625.
                 1-octanol  to  octanoic  acid  and  its  octyl  ester  over  supported  gold   [60]  Movahed  S  K,  Lehi  N  F,  Dabiri  M.  Palladium  nanoparticles
                 catalysts[J]. Chem Sus Chem, 2012, 5(11): 2243-2248.   supported on core-shell and yolk-shell Fe 3O 4@nitrogen doped carbon
            [43]  Choudhary V, Dhar A, Jana P, et al. A green process for chlorine-free   cubes  as  a  highly  efficient,  magnetically  separable  catalyst  for  the
                 benzaldehyde from the solvent-free oxidation of benzyl alcohol with   reduction of nitroarenes and the oxidation of alcohols[J]. Journal of
                 molecular oxygen over a supported nano-size gold catalyst[J]. Green   Catalysis, 2018, 364: 69-79.
                 Chemistry, 2005, 7(11): 768-770.              [61]  Fan J,  Dai  Y, Li  Y,  et al.  Low-temperature,  highly  selective,
            [44]  Enache D, Knight D, Hutchings G. Solvent-free oxidation of primary   gas-phase oxidation of benzyl alcohol over mesoporous K-Cu-TiO 2
                 alcohols  to  aldehydes  using  supported  gold  catalysts[J].  Catalysis   with  stable  copper(Ⅰ)  oxidation  state[J].  Journal  of  the  American
                 Letters, 2005, 103(1/2): 43-51.                   Chemical Society, 2009, 131(43): 15568-15569.
            [45]  Tsunoyama  H,  Tsukuda  T,  Sakurai  H.  Synthetic  application  of   [62]  Dai Y, Yan X, Tang X, et al. Low-temperature gas-phase oxidation of
                 PVP-stabilized  Au  nanocluster  catalyst  to  aerobic  oxidation  of   benzyl  alcohol  on  mesoporous  K-Cu-TiO 2  through  oxidative
                 alcohols in aqueous solution under ambient conditions[J]. Chemistry   dehydrogenation[J]. Chem Cat Chem, 2012, 4(10): 1603-1610.
                 Letters, 2007, 36(2): 212-213.                [63]  Anderson  R,  Griffin  K,  Johnston  P,  et al.  Selective  oxidation  of
            [46]  Liu H, Liu Y, Li Y, et al. Metal-organic framework supported gold   alcohols to carbonyl compounds and carboxylic acids with platinum
                 nanoparticles  as  a  highly  active  heterogeneous  catalyst  for  aerobic   group  metal  catalysts  [J].  Advanced  Synthesis  &  Catalysis,  2003,
                 oxidation  of  alcohols[J].  Journal  of  Physical  Chemistry  C,  2010,   345(4): 517-523.
                 114(31): 13362-13369.                         [64]  Nie R, Liang D, Shen L, et al. Selective oxidation of glycerol with
            [47]  Beier M, Hansen T, Grunwaldt J D. Selective liquid-phase oxidation   oxygen  in  base-free  solution  over  MWCNTs  supported  PtSb  alloy
                 of  alcohols  catalyzed  by  a  silver-based  catalyst  promoted  by  the   nanoparticles[J].  Applied  Catalysis  B:  Environmental,  2012,  127:
                 presence of ceria[J]. Journal of Catalysis, 2009, 266(2): 320–330.   212-220.
            [48]  Korovchenko  P,  Donze  C,  Gallezot  P,  et al.  Oxidation  of  primary   [65]  Dimitratos N, Villa A, Wang D, et al. Pd and Pt catalysts modified by
                 alcohols  with  air  on  carbon-supported  platinum  catalysts  for  the   alloying with Au in the selective oxidation of alcohols[J]. Journal of
                 synthesis of aldehydes or acids[J]. Catalysis Today, 2007, 121(1/2):   Catalysis, 2006, 244 (1): 113-121.
                 13-21.                                        [66]  Hao  Y,  Hao  G  P,  Guo  D  C,  et al.  Bimetallic  Au-Pd  nanoparticles
            [49]  Wang T, Shou H, Kou Y, et al. Base-free aqueous-phase oxidation of   confined  in  tubular  mesoporous  carbon  as  highly  selective  and
                 non-activated  alcohols  with  molecular  oxygen  on  soluble  Pt   reusable  benzyl  alcohol  oxidation  catalysts[J].  Chem  Cat  Chem,
                 nanoparticles[J]. Green Chem, 2009, 11(4): 562-568.   2012, 4(10): 1595-1602.
            [50]  Wang T, Xiao C, Yan L, et al. Aqueous-phase aerobic oxidation of   [67]  Zhang H, Xie Y, Sun Z, et al. In-situ loading ultrafine AuPd particles
                 alcohols by soluble Pt nanoclusters in the absence of base[J]. Chem   on ceria: highly active catalyst for solvent-free selective oxidation of
                 Commun, 2007,(42): 4375-4377.                     benzyl alcohol[J]. Langmuir, 2011, 27(3): 1152-1157.
            [51]  Yamada Y, Arakawa T, Hocke H, et al. A nanoplatinum catalyst for   [68]  Wang  D,  Villa  A,  Spontoni  P, et  al.  In  situ  formation  of  Au–Pd
                 aerobic  oxidation  of  alcohols  in  water[J].  Angewandte  Chemie   bimetallic active sites promoting the physically mixed monometallic
                 International Edition, 2007, 46(5): 704-706.      catalysts  in  the  liquid-phase  oxidation  of  alcohols[J].  Chemistry-A
            [52]  Hong Y, Yan X, Liao X, et al. Platinum nanoparticles supported on   European Journal, 2010, 16(33): 10007-10013.
                 Ca(Mg)-zeolites  for  efficient  room-temperature  alcohol  oxidation   [69]  Chen  Y,  Lim  H,  Tang  Q,  et al.  Solvent-free  aerobic  oxidation  of
                 under  aqueous  conditions[J].  Chemical  Communications,  2014,   benzyl alcohol over Pd monometallic and Au-Pd bimetallic catalysts
                 50(68): 9679-9682.                                supported  on  SBA-16  mesoporous  molecular  sieves[J].  Applied
            [53]  Shiraishi Y,  Tsukamoto D, Sugano Y, et al. Platinum nanoparticles   Catalysis A: General, 2010, 380(1/2): 55-65.
                 supported on anatase titanium dioxide as highly active catalysts for   [70]  Liotta L F, Vanezia A M, Deganello G, et al. Liquid phase selective
                 aerobic  oxidation  under  visible  light  irradiation[J].  ACS  Catalysis,   oxidation  of  benzyl  alcohol  over  Pd–Ag  catalysts  supported  on
                 2012, 2(9): 1984-1992.                            pumice[J]. Catalysis Today, 2001, 66(2/3/4): 271-276.
            [54]  Lu  T,  Du  Z,  Liu  J,  et al.  Aerobic  oxidation  of  primary  aliphatic   [71]  Enache D I, Edwards J K, Landon P, et al. Solvent-free oxidation of
                 alcohols over bismuth oxide supported platinum catalysts in water[J].   primary  alcohols  to  aldehydes  using  Au-Pd/TiO 2 catalysts[J].
                 Green Chem, 2013, 15(8): 2215-2221.               Science, 2006, 311: 362-365.
            [55]  Liang D, Gao J, Sun H, et al. Selective oxidation of glycerol with   [72]  Ebitani  K,  Ji  H  B,  Mizugaki  T,  et al.  Highly  active  trimetallic
                 oxygen in a base-free  aqueous solution over MWNTs supported Pt   Ru/CeO 2/CoO(OH) catalyst for oxidation of alcohols in the presence
                 catalysts[J].  Applied  Catalysis  B:  Environmental,  2011,  106(3/4):   of molecular oxygen[J]. Journal of Molecular Catalysis A: Chemical,
                 423-432.                                          2004, 212(1/2): 161-170.
            [56]  Choi  K,  Akita  T,  Mizugaki  T,  et al.  Highly  selective  oxidation  of   [73]  Liu  G,  Liu  J,  Li  W,  et al.  Aerobic  oxidation  of  alcohols  over
                 allylic alcohols catalysed by monodispersed 8-shell Pd nanoclusters   Ru-Mn-Ce  and  Ru-Co-Ce  catalysts:  The  effect  of  calcination
                 in the presence of molecular oxygen[J]. New Journal of Chemistry,   temperature[J]. Applied Catalysis A: General, 2017, 535: 77-84.
                 2003, 27(2): 324-328.                         [74]  Kawabata T, Shinozuka Y, Ohishi Y, et al. Nickel containing Mg-Al
   18   19   20   21   22   23   24   25   26   27   28