Page 23 - 201907
P. 23
第 7 期 张振清,等: 醇绿色催化氧化方法研究进展 ·1269·
[39] Abad A, Almela C, Corma A, et al. Efficient chemoselective alcohol [57] Mori K, Hara T, Mizugaki T, et al. Hydroxyapatite-supported
oxidation using oxygen as oxidant. Superior performance of gold palladium nanoclusters: A highly active heterogeneous catalyst for
over palladium catalysts[J]. Tetrahedron, 2006, 62(28): 6666-6672. selective oxidation of alcohols by use of molecular oxygen[J].
[40] Yang X, Wang X, Liang C, et al. Aerobic oxidation of alcohols over Journal of the American Chemical Society, 2004, 126(34): 10657-
Au/TiO 2: An insight on the promotion effect of water on the catalytic 10666.
activity of Au/TiO 2[J]. Catalysis Communications, 2008, 9(13): [58] Pillai U R, Sahle-Demessie E. Selective oxidation of alcohols by
2278-2281. molecular oxygen over a Pd/MgO catalyst in the absence of any
[41] Tsukamoto D, Shiraishi Y, Sugano Y, et al. Gold nanoparticles additives[J]. Green Chemistry, 2004, 6(3): 161-165.
located at the interface of anatase/rutile TiO 2 particles as active [59] Kakiuchi N, Maeda Y, Nishimura T, et al. Pd(Ⅱ)-hydrotalcite-
plasmonic photocatalysts for aerobic oxidation[J]. Journal of the catalyzed oxidation of alcohols to aldehydes and ketones using
American Chemical Society, 2012, 134(14): 6309-6315. atmospheric pressure of air[J]. Journal of Organic Chemistry, 2001,
[42] Ishida T, Ogihara Y, Ohashi H, et al. Base-free direct oxidation of 66(20): 6620-6625.
1-octanol to octanoic acid and its octyl ester over supported gold [60] Movahed S K, Lehi N F, Dabiri M. Palladium nanoparticles
catalysts[J]. Chem Sus Chem, 2012, 5(11): 2243-2248. supported on core-shell and yolk-shell Fe 3O 4@nitrogen doped carbon
[43] Choudhary V, Dhar A, Jana P, et al. A green process for chlorine-free cubes as a highly efficient, magnetically separable catalyst for the
benzaldehyde from the solvent-free oxidation of benzyl alcohol with reduction of nitroarenes and the oxidation of alcohols[J]. Journal of
molecular oxygen over a supported nano-size gold catalyst[J]. Green Catalysis, 2018, 364: 69-79.
Chemistry, 2005, 7(11): 768-770. [61] Fan J, Dai Y, Li Y, et al. Low-temperature, highly selective,
[44] Enache D, Knight D, Hutchings G. Solvent-free oxidation of primary gas-phase oxidation of benzyl alcohol over mesoporous K-Cu-TiO 2
alcohols to aldehydes using supported gold catalysts[J]. Catalysis with stable copper(Ⅰ) oxidation state[J]. Journal of the American
Letters, 2005, 103(1/2): 43-51. Chemical Society, 2009, 131(43): 15568-15569.
[45] Tsunoyama H, Tsukuda T, Sakurai H. Synthetic application of [62] Dai Y, Yan X, Tang X, et al. Low-temperature gas-phase oxidation of
PVP-stabilized Au nanocluster catalyst to aerobic oxidation of benzyl alcohol on mesoporous K-Cu-TiO 2 through oxidative
alcohols in aqueous solution under ambient conditions[J]. Chemistry dehydrogenation[J]. Chem Cat Chem, 2012, 4(10): 1603-1610.
Letters, 2007, 36(2): 212-213. [63] Anderson R, Griffin K, Johnston P, et al. Selective oxidation of
[46] Liu H, Liu Y, Li Y, et al. Metal-organic framework supported gold alcohols to carbonyl compounds and carboxylic acids with platinum
nanoparticles as a highly active heterogeneous catalyst for aerobic group metal catalysts [J]. Advanced Synthesis & Catalysis, 2003,
oxidation of alcohols[J]. Journal of Physical Chemistry C, 2010, 345(4): 517-523.
114(31): 13362-13369. [64] Nie R, Liang D, Shen L, et al. Selective oxidation of glycerol with
[47] Beier M, Hansen T, Grunwaldt J D. Selective liquid-phase oxidation oxygen in base-free solution over MWCNTs supported PtSb alloy
of alcohols catalyzed by a silver-based catalyst promoted by the nanoparticles[J]. Applied Catalysis B: Environmental, 2012, 127:
presence of ceria[J]. Journal of Catalysis, 2009, 266(2): 320–330. 212-220.
[48] Korovchenko P, Donze C, Gallezot P, et al. Oxidation of primary [65] Dimitratos N, Villa A, Wang D, et al. Pd and Pt catalysts modified by
alcohols with air on carbon-supported platinum catalysts for the alloying with Au in the selective oxidation of alcohols[J]. Journal of
synthesis of aldehydes or acids[J]. Catalysis Today, 2007, 121(1/2): Catalysis, 2006, 244 (1): 113-121.
13-21. [66] Hao Y, Hao G P, Guo D C, et al. Bimetallic Au-Pd nanoparticles
[49] Wang T, Shou H, Kou Y, et al. Base-free aqueous-phase oxidation of confined in tubular mesoporous carbon as highly selective and
non-activated alcohols with molecular oxygen on soluble Pt reusable benzyl alcohol oxidation catalysts[J]. Chem Cat Chem,
nanoparticles[J]. Green Chem, 2009, 11(4): 562-568. 2012, 4(10): 1595-1602.
[50] Wang T, Xiao C, Yan L, et al. Aqueous-phase aerobic oxidation of [67] Zhang H, Xie Y, Sun Z, et al. In-situ loading ultrafine AuPd particles
alcohols by soluble Pt nanoclusters in the absence of base[J]. Chem on ceria: highly active catalyst for solvent-free selective oxidation of
Commun, 2007,(42): 4375-4377. benzyl alcohol[J]. Langmuir, 2011, 27(3): 1152-1157.
[51] Yamada Y, Arakawa T, Hocke H, et al. A nanoplatinum catalyst for [68] Wang D, Villa A, Spontoni P, et al. In situ formation of Au–Pd
aerobic oxidation of alcohols in water[J]. Angewandte Chemie bimetallic active sites promoting the physically mixed monometallic
International Edition, 2007, 46(5): 704-706. catalysts in the liquid-phase oxidation of alcohols[J]. Chemistry-A
[52] Hong Y, Yan X, Liao X, et al. Platinum nanoparticles supported on European Journal, 2010, 16(33): 10007-10013.
Ca(Mg)-zeolites for efficient room-temperature alcohol oxidation [69] Chen Y, Lim H, Tang Q, et al. Solvent-free aerobic oxidation of
under aqueous conditions[J]. Chemical Communications, 2014, benzyl alcohol over Pd monometallic and Au-Pd bimetallic catalysts
50(68): 9679-9682. supported on SBA-16 mesoporous molecular sieves[J]. Applied
[53] Shiraishi Y, Tsukamoto D, Sugano Y, et al. Platinum nanoparticles Catalysis A: General, 2010, 380(1/2): 55-65.
supported on anatase titanium dioxide as highly active catalysts for [70] Liotta L F, Vanezia A M, Deganello G, et al. Liquid phase selective
aerobic oxidation under visible light irradiation[J]. ACS Catalysis, oxidation of benzyl alcohol over Pd–Ag catalysts supported on
2012, 2(9): 1984-1992. pumice[J]. Catalysis Today, 2001, 66(2/3/4): 271-276.
[54] Lu T, Du Z, Liu J, et al. Aerobic oxidation of primary aliphatic [71] Enache D I, Edwards J K, Landon P, et al. Solvent-free oxidation of
alcohols over bismuth oxide supported platinum catalysts in water[J]. primary alcohols to aldehydes using Au-Pd/TiO 2 catalysts[J].
Green Chem, 2013, 15(8): 2215-2221. Science, 2006, 311: 362-365.
[55] Liang D, Gao J, Sun H, et al. Selective oxidation of glycerol with [72] Ebitani K, Ji H B, Mizugaki T, et al. Highly active trimetallic
oxygen in a base-free aqueous solution over MWNTs supported Pt Ru/CeO 2/CoO(OH) catalyst for oxidation of alcohols in the presence
catalysts[J]. Applied Catalysis B: Environmental, 2011, 106(3/4): of molecular oxygen[J]. Journal of Molecular Catalysis A: Chemical,
423-432. 2004, 212(1/2): 161-170.
[56] Choi K, Akita T, Mizugaki T, et al. Highly selective oxidation of [73] Liu G, Liu J, Li W, et al. Aerobic oxidation of alcohols over
allylic alcohols catalysed by monodispersed 8-shell Pd nanoclusters Ru-Mn-Ce and Ru-Co-Ce catalysts: The effect of calcination
in the presence of molecular oxygen[J]. New Journal of Chemistry, temperature[J]. Applied Catalysis A: General, 2017, 535: 77-84.
2003, 27(2): 324-328. [74] Kawabata T, Shinozuka Y, Ohishi Y, et al. Nickel containing Mg-Al