Page 86 - 201907
P. 86

·1332·                            精细化工   FINE CHEMICALS                                  第 36 卷

            温度低于 32  ℃时 D h 基本保持在 120  nm 左右,当                 的胶束。
            温度高于 32  ℃后 D h 随温度升高逐渐减小至 93 nm                      (3)利用 HRP/ H 2 O 2 催化交联 P(4-VPh)胶束核
            左右。随着温度升高,核交联胶束壳层的 PNIPAm                          制备了酶催化核交联的 P(4-VPh-b-NIPAm)胶束,
            刷逐步脱水坍塌导致粒径减小。P(4-VPh-b-NIPAm)                     25 ℃时平均粒径约为 119 nm,在水中具有极好的稳
            和核交联胶束 37  ℃时的粒径分布如图 7b 所示,                        定性,其水溶液的 LCST 为 34.9  ℃,随温度升高其
            37 ℃时 P(4-VPh-b-NIPAm)水溶液呈现出宽的多重                   粒径逐渐减小至 37  ℃的 92.9 nm,表现出良好的温
            粒径分布。这是因为温度高于 LCST 后,P(4-VPh-b-                    度响应和热稳定性。该酶催化交联胶束可在核交联
            NIPAm)转变成全疏水聚合物,自组装形成的胶束解                          的同时实现药物的装载,可望应用于疏水药物温度
            体,在水中形成不稳定的大尺寸聚集体甚至沉淀。                             响应的控制释放。
            而核交联胶束 37  ℃时仍为单峰分布(D h ≈92.9 nm,
                                                               参考文献:
            PDI=0.217)。虽然在 37  ℃时核交联胶束壳层的
            PNIPAm 已转变成疏水链段,但是相邻 PNIPAm 刷                      [1]   Cabral  H,  Miyata  K,  Osada  K,  et al.  Block  copolymer  micelles  in
                                                                   nanomedicine  applications[J].  Chemical  Review,  2018,  118  (14):
            间的排斥效应与体积位阻会阻碍 PNIPAm 大分子链
                                                                   6844-6892.
            在胶束核表面的完全坍塌,使得核交联胶束在水中                             [2]   Biswas S, Kumari P, Lakhani P, et al. Recent advances in polymeric
            仍保持稳定。                                                 micelles  for  anti-cancer  drug  delivery[J].  European  Journal  of
                                                                   Pharmaceutical Sciences, 2016, 83: 184-202.
                                                               [3]   Kuang  H,  Wu  S,  Meng  F,  et al.  Core-crosslinked  amphiphilic
                                                                   biodegradable  copolymer  based  on  the  complementary  multiple
                                                                   hydrogen bonds of nucleobases: synthesis, self-assembly and in vitro
                                                                   drug  delivery[J].  Journal  of  Materials  Chemistry,  2012,  22  (47):
                                                                   24832-24840.
                                                               [4]   O'Reilly  R  K,  Hawker  C  J,  Wooley  K  L.  Cross-linked  block
                                                                   copolymer micelles: functional nanostructures of great potential and
                                                                   versatility[J]. Chemical Society Reviews, 2006, 35(11): 1068-1083.
                                                               [5]   van  Nostrum  C  F.  Covalently  cross-linked  amphiphilic  block
                                                                   copolymer micelles[J]. Soft Matter, 2011, 7(7): 3246-3259.
                                                               [6]   Talelli M, Barz M, Rijcken C J F, et al. Core-crosslinked polymeric
                                                                   micelles: principles, preparation, biomedical applications and clinical
                                                                   translation[J]. Nano Today, 2015, 10(1): 93-117.
                                                               [7]   Shuai X, Merdan T, Schaper A K, et al. Core-cross-linked polymeric
                                                                   micelles as paclitaxel carriers[J]. Bioconjugate Chemistry, 2004, 15
                                                                   (3): 441-448.
                                                               [8]   Talelli M, Iman M, Varkouhi A K, et al. Core-crosslinked polymeric
                                                                   micelles with controlled release of covalently entrapped doxorubicin
                                                                   [J]. Biomaterials 2010, 31(30): 7797-7804.
                                                               [9]   Piogé  S,  Nesterenko  A,  Brotons  G,  et al.  Core  cross-linking  of
                                                                   dynamic  diblock  copolymer  micelles:  quantitative  wtudy  of
                                                                   photopolymerization   efficiency   and   micelle   structure[J].

            图 7    核交联胶束的 D h 随温度的变化(a);P(4-VPh-b-                 Macromolecules, 2011, 44(3): 594-603.
                                                               [10]  Chen J, Ouyang J, Kong J, et al. Photo-cross-linked and pH-sensitive
                  NIPAm)和核交联胶束 37  ℃时的粒径分布(b)
                                                                   biodegradable  micelles  for  doxorubicin  delivery[J].  ACS  Applied
            Fig. 7  (a) D h  of core-crosslinked micelles as a function of
                   temperature, (b) size distribution of P(4-VPh-b-NIPAm)   Materials & Interfaces, 2013, 5 (8): 3108-3117.
                   micelles and core-crosslinked micelles at 37  ℃   [11]  Dai Y, Chen X, Zhang X, et al. Recent developments in the area of
                                                                   click-crosslinked nanocarriers for drug delivery[J]. Macromolecular
                                                                   Rapid Communications, 2019, 40(3): 1800541.
            3    结论                                            [12]  Gu  Z,  Wang  X,  Cheng  R,  et al.  Hyaluronic  acid  shell  and
                                                                   disulfide-crosslinked  core  micelles  for  in  vivo  targeted  delivery  of
                (1)通过 RAFT 聚合合成了结构明确、窄相对                           bortezomib  for  the  treatment  of  multiple  myeloma[J].  Acta
            分子质量分布的 P(4-ASt-b-NIPAm)两嵌段共聚物,                        Biomaterialia, 2018, 80: 288-295.
                                                               [13]  Zhang H, Liu P. Bio-inspired keratin-based core-crosslinked micelles
            再经水合肼选择性水解制备了 P(4-VPh-b-NIPAm)两
                                                                   for  pH  and  reduction  dual-responsive  triggered  DOX  delivery[J].
            亲性聚合物。                                                 International  Journal  of  Biological  Macromolecules,  2019,  123:
                ( 2) P(4-VPh-b-NIPAm)  水溶 液的 LCST 为                1150-1156.
            31.2 ℃,CMC 为 0.015 g/L,可形成平均粒径为 137 nm             [14]  Kawakita H, Hamamoto K, Ohto K, et al. Polyphenol polymerization
   81   82   83   84   85   86   87   88   89   90   91