Page 24 - 精细化工2019年第8期
P. 24
·1512· 精细化工 FINE CHEMICALS 第 36 卷
modeling of CO 2 photoconversion using a response surface 2018, 224(2): 60-68.
methodology with porphyrin-based metal organic framework[J]. [30] Zhao Yanming, Dong Yuze, Zhang Bao, et al. Coordinative
Reaction Kinetics, Mechanisms and Catalysis, 2018, 125(1): 411- integration of a metal-porphyrinic framework and TiO 2 nanoparticles
431. for the formation of composite photocatalysts with enhanced
[21] Sadeghi N, Sharifnia S, Arabi M S, et al. A porphyrin-based metal visible-light-driven photocatalytic activities[J]. Journal of Materials
organic framework for high rate photoreduction of CO 2 to CH 4 in gas Chemistry A, 2017, 5(29): 15380-15389.
phase[J]. Journal of CO 2 Utilization, 2016, (16): 450-457. [31] Deenadayalan M S, Sharma N, Verma P K, et al.
[22] Chen Erxia, Qiu Mei, Zhang Yongfan, et al. Acid and base resistant Visible-light-assisted photocatalytic reduction of nitroaromatics by
zirconium polyphenolate-metalloporphyrin scaffolds for efficient recyclable Ni(Ⅱ)- porphyrin metal-organic framework (MOF) at
CO 2 photoreduction[J]. Advanced Materials, 2018, 30(2): 1704388. RT[J]. Inorganic Chemistry, 2016, 55(11): 5320-5327.
[23] Leng F, Liu H, Ding M, et al. Boosting photocatalytic hydrogen [32] Zhou Yuanrong, Yang Weijun, Qin Minggao, et al. Self-assembly of
production of porphyrinic MOFs: the metal location in metal-organic framework thin films containing metalloporphyrin and
metalloporphyrin matters[J]. Acs Catalysis, 2018, 8(5): 4583-4590. their photocatalytic activity under visible light[J]. Applied
[24] He T, Chen S, Ni B, et al. Zirconium-porphyrin-based metal-organic Organometallic Chemistry, 2016, 30(4): 188-192.
framework hollow nanotubes for immobilization of noble-metal [33] Yuan Shuai, Qin Junsheng, Zou Lanfang, et al. Thermodynamically
single atoms[J]. Angewandte Chemie, 2018, 130(13): 3551-3556. guided synthesis of mixed-linker Zr-MOFs with enhanced
[25] Wang Qiang (王强), Xu Rui (徐睿), Wang Xusheng (王旭生), et al. tunability[J]. Journal of the American Chemical Society, 2016,
Platinum nanoparticle-decorated porous prophyrin-based metal 138(20): 6636.
organic framework for photocatalytic hydrogen production[J]. [34] Shi Li, Wang Tao, Zhang Huabin, et al. An amine-functionalized
Chinese Journal of Inorganic Chemistry(无机化学学报), 2017, iron( Ⅲ ) metal-organic framework as efficient visible-light
33(11): 2038-2044. photocatalyst for Cr(Ⅵ) reduction[J]. Advanced Science, 2015, 2(3):
[26] Sasan K, Lin Q, Mao C, et al. Incorporation of iron hydrogenase 1500006.
active sites into a highly stable metal-organic framework for [35] Zhao Fangyao, Li Wenjun, Guo An, et al. Zn(Ⅱ) porphyrin based
photocatalytic hydrogen generation[J]. Chemical Communications, nano-/microscale metal–organic frameworks: morphology dependent
2014, 50(72): 10390-10393. sensitization and photocatalytic oxathiolane deprotection[J]. RSC
[27] Paille G, Gomezmingot M, Rochmarchal C, et al. A fully noble Advances, 2016, 6(31): 26199-26202.
metal-free photosystem based on cobalt-polyoxometalates [36] Xu Caiyun, Liu Hang, Li Dandan, et al. Direct evidence of charge
immobilized in a porphyrinic metal-organic framework for water separation in a metal–organic framework: efficient and selective
oxidation[J]. Journal of the American Chemical Society, 2018, photocatalytic oxidative coupling of amines via charge and energy
140(10): 3613-3618. transfer[J]. Chemical Science, 2018, 9(12): 3152-3158.
[28] Meng Aina, LingXiao Chaihu, Chen Huanhuan, et al. Ultrahigh [37] Xie Minghua, Yang Xiuli, Zou Chao, et al. A Sn-Ⅳ-Porphyrin-based
adsorption and singlet-oxygen mediated degradation for efficient metal-organic framework for the selective photo-oxygenation of
synergetic removal of bisphenol A by a stable zirconium-porphyrin phenol and sulfides[J]. Inorganic Chemistry, 2011, 50(12): 5318-
metal-organic framework[J]. Scientific Reports, 2017, 7(1): 6297. 5320.
[29] Li Shi, Yang Liuqing, Zhang Huabin, et al. Implantation of iron(Ⅲ) [38] Johnson J A, Luo Jian, Zhang Xu, et al. Porphyrin-metalation-
in porphyrinic metal organic frameworks for highly improved mediated tuning of photoredox catalytic properties in metal-organic
photocatalytic performance[J]. Applied Catalysis B: Environmental, frameworks[J]. ACS Catalysis, 2015, 5(9): 5283-5291.
(上接第 1506 页) [33] Hiegel G A, Lewis J C, Bae J W. Conversion of α-amino acids into
nitriles by oxidative decarboxylation with trichloroisocyanuric
[23] Verduyckt J, Van Hoof M, De Schouwer F, et al. Pd Pb-catalyzed acid[J]. Chem Inform, 2004, 34(19):3449-3453.
decarboxylation of proline to pyrrolidine: highly selective formation [34] Maresh J J, Crowe S O, Ralko A A, et al. Facile one-pot synthesis of
of a biobasedamine in water[J]. ACS Catalysis, 2016, 6(11): 7303- tetrahydroisoquinolines from amino acids via hypochlorite-mediated
7310. decarboxylation and pictet-spengler condensation[J]. Tetrahedron
[24] Verduyckt J, Coeck R, De Vos D E. Ru-catalyzed hydrogenation– Letters, 2014, 55(36): 5047-5051.
decarbonylation of amino acids to bio-based primary amines[J]. ACS [35] Fu X, Tian S, Hou S, et al. Development of catalytic decarboxylation
Sustainable Chemistry & Engineering, 2017, 5(4): 3290-3295. of highly sour crude oil[J]. Chemical Industry & Engineering
[25] Lammens T M, Le Nôtre J, Franssen M C R, et al. Synthesis of Progress, 2005, 24(9): 968-970.
biobased succinonitrile from glutamic acid and glutamine[J]. Chem [36] Hidalgo F J, Zamora R. Conversion of phenylalanine into styrene by
Sus Chem, 2011, 4(6): 785-791. 2, 4-decadienal in model systems[J]. J Agric Food Chem, 2007,
[26] Stanford M J, Pflughaupt R L, Dove A P. Synthesis of stereoregular 55(12): 4902-4906.
cyclic poly (lactide)s via “thiol−ene”clickchemistry[J]. Macromolecules, [37] Changi S, Zhu M, Savage P E. Hydrothermal reaction kinetics and
2010, 43(16): 6538-6541. pathways of phenylalanine alone and in binary mixtures[J]. Chem
[27] Claes L, Verduyckt J, Stassen I, et al. Ruthenium-catalyzed aerobic Sus Chem, 2012, 5(9): 1743-1757.
oxidative decarboxylation of amino acids: a green, zero-waste route [38] Kibet J K, Khachatryan L, Dellinger B. Molecular products from the
to biobased nitriles[J]. Chemical Communications, 2015, 51(30): thermal degradation of glutamic acid[J]. Journal of Agricultural and
6528-6531. Food Chemistry, 2013, 61(32): 7696-7704.
[28] Claes L, Matthessen R, Rombouts I, et al. Bio-based nitriles from the [39] Dai J, Huang Y, Fang C, et al. Electrochemical synthesis of adiponitrile
heterogeneously catalyzed oxidative decarboxylation of amino acids from the renewable raw material glutamic acid[J]. Chem Sus Chem,
[J]. Chem Sus Chem, 2015, 8(2): 345-352. 2012, 5(4): 617-620.
[29] Araki K, Ozeki T. Amino acids[J/OL]. Chem Inform, 2007, 38(52): [40] Matthessen R, Fransaer J, Binnemans K, et al. Electrocarboxylation:
[2019-04-11]. https: //www. researchgate. net/publication/264732813_ towards sustainable and efficient synthesis of valuable carboxylic
Amino_Acids. DOI: 10. 1002/chin. 200752236. acids[J]. Journal of Organic Chemistry, 2014, 10(1): 2484-2500.
[30] Friedman A H, Morgulis S. The oxidation of amino acids with [41] Carlo C, Giulia B, Carl-Johan W. Photocatalytic decarboxylative
sodium hypobromite[J]. Journal of the American Chemical Society, reduction of carboxylic acids and its application in asymmetric
1936, 58(6): 909-913. synthesis[J]. Organic Letters, 2015, 46(7): 4228-4231.
[31] Langheld K. Über das verhalten der cholsäuregegenozon[J]. European [42] Zuo Z, MacMillan D W. Decarboxylative arylation of α-amino
Journal of Inorganic Chemistry, 1908, 41(1): 1023-1025. acids via photoredox catalysis: a one-step conversion of biomass to
[32] Dakin H D. The oxidation of amino-acids to cyanides[J]. Biochemical drug pharmacophore[J]. Journal of the American Chemical Society,
Journal, 1916, 10(2): 319. 2015, 45(41): 5257-5260.