Page 24 - 精细化工2019年第8期
P. 24

·1512·                            精细化工   FINE CHEMICALS                                  第 36 卷

                 modeling  of  CO 2  photoconversion  using  a  response  surface   2018, 224(2): 60-68.
                 methodology  with  porphyrin-based  metal  organic  framework[J].   [30]  Zhao  Yanming,  Dong  Yuze,  Zhang  Bao,  et al.  Coordinative
                 Reaction  Kinetics,  Mechanisms  and  Catalysis,  2018,  125(1):  411-   integration of a metal-porphyrinic framework and TiO 2 nanoparticles
                 431.                                              for  the  formation  of  composite  photocatalysts  with  enhanced
            [21]  Sadeghi N, Sharifnia S, Arabi M S, et al. A porphyrin-based metal   visible-light-driven  photocatalytic  activities[J].  Journal  of  Materials
                 organic framework for high rate photoreduction of CO 2 to CH 4 in gas   Chemistry A, 2017, 5(29): 15380-15389.
                 phase[J]. Journal of CO 2 Utilization, 2016, (16): 450-457.     [31]  Deenadayalan  M  S,  Sharma  N,  Verma  P  K,  et al.
            [22]  Chen Erxia, Qiu Mei, Zhang Yongfan, et al. Acid and base resistant   Visible-light-assisted  photocatalytic  reduction  of  nitroaromatics  by
                 zirconium  polyphenolate-metalloporphyrin  scaffolds  for  efficient   recyclable  Ni(Ⅱ)-  porphyrin  metal-organic  framework  (MOF)  at
                 CO 2 photoreduction[J]. Advanced Materials, 2018, 30(2): 1704388.   RT[J]. Inorganic Chemistry, 2016, 55(11): 5320-5327.
            [23]  Leng  F,  Liu  H,  Ding  M,  et al.  Boosting  photocatalytic  hydrogen   [32]  Zhou Yuanrong, Yang Weijun, Qin Minggao, et al. Self-assembly of
                 production  of  porphyrinic  MOFs:  the  metal  location  in   metal-organic framework thin films containing metalloporphyrin and
                 metalloporphyrin matters[J]. Acs Catalysis, 2018, 8(5): 4583-4590.     their  photocatalytic  activity  under  visible  light[J].  Applied
            [24]  He T, Chen S, Ni B, et al. Zirconium-porphyrin-based metal-organic   Organometallic Chemistry, 2016, 30(4): 188-192.
                 framework  hollow  nanotubes  for  immobilization  of  noble-metal   [33]  Yuan Shuai, Qin Junsheng, Zou Lanfang, et al. Thermodynamically
                 single atoms[J]. Angewandte Chemie, 2018, 130(13): 3551-3556.     guided  synthesis  of  mixed-linker  Zr-MOFs  with  enhanced
            [25]  Wang Qiang (王强), Xu Rui (徐睿), Wang Xusheng (王旭生), et al.   tunability[J].  Journal  of  the  American  Chemical  Society,  2016,
                 Platinum  nanoparticle-decorated  porous  prophyrin-based  metal   138(20): 6636.
                 organic  framework  for  photocatalytic  hydrogen  production[J].   [34]  Shi  Li,  Wang  Tao,  Zhang  Huabin,  et al.  An  amine-functionalized
                 Chinese  Journal  of  Inorganic  Chemistry(无机化学学报),  2017,   iron( Ⅲ )  metal-organic  framework  as  efficient  visible-light
                 33(11): 2038-2044.                                photocatalyst for Cr(Ⅵ) reduction[J]. Advanced Science, 2015, 2(3):
            [26]  Sasan  K,  Lin  Q,  Mao  C,  et al.  Incorporation  of  iron  hydrogenase   1500006.
                 active  sites  into  a  highly  stable  metal-organic  framework  for   [35]  Zhao  Fangyao,  Li  Wenjun,  Guo  An, et al. Zn(Ⅱ)  porphyrin based
                 photocatalytic  hydrogen  generation[J].  Chemical  Communications,   nano-/microscale metal–organic frameworks: morphology dependent
                 2014, 50(72): 10390-10393.                        sensitization  and  photocatalytic  oxathiolane  deprotection[J].  RSC
            [27]  Paille  G,  Gomezmingot  M,  Rochmarchal  C,  et al.  A  fully  noble   Advances, 2016, 6(31): 26199-26202.
                 metal-free   photosystem   based   on   cobalt-polyoxometalates   [36]  Xu Caiyun, Liu Hang, Li Dandan, et al. Direct evidence of charge
                 immobilized  in  a  porphyrinic  metal-organic  framework  for  water   separation  in  a  metal–organic  framework:  efficient  and  selective
                 oxidation[J].  Journal  of  the  American  Chemical  Society,  2018,   photocatalytic  oxidative  coupling  of  amines  via  charge  and  energy
                 140(10): 3613-3618.                               transfer[J]. Chemical Science, 2018, 9(12): 3152-3158.
            [28]  Meng  Aina,  LingXiao  Chaihu,  Chen  Huanhuan,  et al.  Ultrahigh   [37]  Xie Minghua, Yang Xiuli, Zou Chao, et al. A Sn-Ⅳ-Porphyrin-based
                 adsorption  and  singlet-oxygen  mediated  degradation  for  efficient   metal-organic  framework  for  the  selective  photo-oxygenation  of
                 synergetic removal of bisphenol A by a stable zirconium-porphyrin   phenol  and  sulfides[J].  Inorganic  Chemistry,  2011,  50(12):  5318-
                 metal-organic framework[J]. Scientific Reports, 2017, 7(1): 6297.     5320.
            [29]  Li Shi, Yang Liuqing, Zhang Huabin, et al. Implantation of iron(Ⅲ)   [38]  Johnson  J  A,  Luo  Jian,  Zhang  Xu,  et al.  Porphyrin-metalation-
                 in  porphyrinic  metal  organic  frameworks  for  highly  improved   mediated tuning of photoredox catalytic properties in metal-organic
                 photocatalytic performance[J]. Applied Catalysis B: Environmental,   frameworks[J]. ACS Catalysis, 2015, 5(9): 5283-5291.

            (上接第 1506 页)                                       [33]  Hiegel G A, Lewis J C, Bae J W. Conversion of α-amino acids into
                                                                   nitriles  by  oxidative  decarboxylation  with  trichloroisocyanuric
            [23]  Verduyckt J, Van Hoof M, De Schouwer F, et al. Pd Pb-catalyzed   acid[J]. Chem Inform, 2004, 34(19):3449-3453.
                 decarboxylation of proline to pyrrolidine: highly selective formation   [34]  Maresh J J, Crowe S O, Ralko A A, et al. Facile one-pot synthesis of
                 of a biobasedamine in water[J]. ACS Catalysis, 2016, 6(11): 7303-   tetrahydroisoquinolines from amino acids via hypochlorite-mediated
                 7310.                                             decarboxylation  and  pictet-spengler  condensation[J].  Tetrahedron
            [24]  Verduyckt J, Coeck R, De Vos D E. Ru-catalyzed hydrogenation–  Letters, 2014, 55(36): 5047-5051.
                 decarbonylation of amino acids to bio-based primary amines[J]. ACS   [35]  Fu X, Tian S, Hou S, et al. Development of catalytic decarboxylation
                 Sustainable Chemistry & Engineering, 2017, 5(4): 3290-3295.     of  highly  sour  crude  oil[J].  Chemical  Industry  &  Engineering
            [25]  Lammens T M,  Le Nôtre J,  Franssen M C R,  et al.  Synthesis  of   Progress, 2005, 24(9): 968-970.
                 biobased succinonitrile from glutamic acid and glutamine[J]. Chem   [36]  Hidalgo F J, Zamora R. Conversion of phenylalanine into styrene by
                 Sus Chem, 2011, 4(6): 785-791.                    2,  4-decadienal  in  model  systems[J].  J  Agric  Food  Chem,  2007,
            [26]  Stanford M J, Pflughaupt R L, Dove A P. Synthesis of stereoregular   55(12): 4902-4906.
                 cyclic poly (lactide)s via “thiol−ene”clickchemistry[J]. Macromolecules,   [37]  Changi S, Zhu M, Savage P E. Hydrothermal reaction kinetics and
                 2010, 43(16): 6538-6541.                          pathways  of  phenylalanine  alone  and  in  binary  mixtures[J].  Chem
            [27]  Claes L, Verduyckt J, Stassen I, et al. Ruthenium-catalyzed aerobic   Sus Chem, 2012, 5(9): 1743-1757.
                 oxidative decarboxylation of amino acids: a green, zero-waste route   [38]  Kibet J K, Khachatryan L, Dellinger B. Molecular products from the
                 to  biobased  nitriles[J].  Chemical  Communications,  2015,  51(30):   thermal degradation of glutamic acid[J]. Journal of Agricultural and
                 6528-6531.                                        Food Chemistry, 2013, 61(32): 7696-7704.
            [28]  Claes L, Matthessen R, Rombouts I, et al. Bio-based nitriles from the   [39]  Dai J, Huang Y, Fang C, et al. Electrochemical synthesis of adiponitrile
                 heterogeneously catalyzed oxidative decarboxylation of amino acids   from the renewable raw material glutamic acid[J]. Chem Sus Chem,
                 [J]. Chem Sus Chem, 2015, 8(2): 345-352.          2012, 5(4): 617-620.
            [29]  Araki K, Ozeki T. Amino acids[J/OL]. Chem Inform, 2007, 38(52):   [40]  Matthessen R, Fransaer J, Binnemans K, et al. Electrocarboxylation:
                 [2019-04-11]. https: //www. researchgate. net/publication/264732813_   towards  sustainable  and  efficient  synthesis  of  valuable  carboxylic
                 Amino_Acids. DOI: 10. 1002/chin. 200752236.       acids[J]. Journal of Organic Chemistry, 2014, 10(1): 2484-2500.
            [30]  Friedman  A  H,  Morgulis  S.  The  oxidation  of  amino  acids  with   [41]  Carlo  C,  Giulia  B,  Carl-Johan  W.  Photocatalytic  decarboxylative
                 sodium hypobromite[J]. Journal of the American Chemical Society,   reduction  of  carboxylic  acids  and  its  application  in  asymmetric
                 1936, 58(6): 909-913.                             synthesis[J]. Organic Letters, 2015, 46(7): 4228-4231.
            [31]  Langheld K. Über das verhalten der cholsäuregegenozon[J]. European   [42]  Zuo  Z,  MacMillan  D  W.  Decarboxylative  arylation  of  α-amino
                 Journal of Inorganic Chemistry, 1908, 41(1): 1023-1025.     acids via photoredox catalysis: a one-step conversion of biomass to
            [32]  Dakin H D. The oxidation of amino-acids to cyanides[J]. Biochemical   drug pharmacophore[J]. Journal of the American Chemical Society,
                 Journal, 1916, 10(2): 319.                        2015, 45(41): 5257-5260.
   19   20   21   22   23   24   25   26   27   28   29