Page 194 - 精细化工2019年第9期
P. 194

·1922·                            精细化工   FINE CHEMICALS                                  第 36 卷

            构未发生改变,且构成了较大的孔径结构以及比表                                 (催化学报), 2009, 30(4): 323-327.
                                                               [15]  Kim  K,  Moon  J  H.  Three-dimensional  bicontinuous  BiVO 4/ZnO
            面积,均有利于分子尺寸为 1.59  nm1.18  nm                        photoanodes  for  high  solar  water-splitting  performance  at  low  bias
                                                                   potential[J].  ACS  Applied  Materials  &  Interfaces,  2018,  10(40):
            0.56 nm 的 RhB 扩散和吸附;BiVO 4 复合 MnO 2 二者                 34238-34244.
                                                               [16]  Liu Qiongjun (刘琼君), Lin Bizhou (林碧洲), Li Peipei (李培培), et
            之间发生了电子耦合作用,减弱了 BiVO 4 的荧光强                            al. Preparation of BiPO 4 /BiVO 4 composites with high visible-light
            度,表明复合 MnO 2 能有效地抑制光生电子和空穴                             photocatalytic activity[J]. Chemical Research in Chinese Universities
                                                                   (高等学校化学研究), 2017, 38(1): 94-100.
            的复合,提高了量子的利用效率,使得复合材料较                             [17]  Guan M, Ma D, Hu S, et al. From hollow olive-shaped BiVO 4 to n-p
                                                                   core-shell  BiVO 4@Bi 2O 3  microspheres:  Controlled  synthesis  and
            单独的 BiVO 4 或 MnO 2 ,对 RhB 有更好的催化降解                     enhanced  visible-light-responsive  photocatalytic  properties[J].  Inorganic
                                                                   Chemistry, 2011, 50(3): 800.
            效果。                                                [18]  Wetchakun N, Chaiwichain S, Inceesungvorn B, et al. BiVO 4/CeO 2
                                                                   nanocomposites  with  high  visible-light-induced  photocatalytic
                (2)当 m(MnO 2 )∶m(BiVO 4 )=10∶100 时,光催              activity[J]. ACS Applied Materials & Interfaces, 2012, 4(7): 3718-
            化效果最好,光照 3 h 对 10 mg/L 的 RhB(100 mL)                   3723.
                                                               [19]  Li J, Cui M, Guo Z, et al. Preparation of p–n junction BiVO 4/Ag 2O
            的降解率达到 97.8%。经过 3 次套用,降解率仍                             heterogeneous nanostructures with enhanced visible-light photocatalytic
                                                                   activity[J]. Materials Letters, 2015, 151: 75-78.
            能达到 91.7%,表明 BiVO 4 -MnO 2 有很好的催化稳                 [20]  Trzcinski  K,  Szkoda  M,  Sawczak  M,  et al.  Visible  visible  light
                                                                   activity of pulsed layer deposited BiVO 4/MnO 2 films decorated with
            定性。                                                    gold nanoparticles: The evidence for hydroxyl radicals formation[J].
                                                                   Applied Surface Science, 2016, 385: 199-208.
                (3)复合材料 BiVO 4 -MnO 2 催化反应后不易于                 [21]  Qin  M,  Zhao  H,  Yang  W,  et al.  A  facile  one-pot  synthesis  of
            回收,下一步希望在保持复合材料 BiVO 4 -MnO 2 良                        three-dimensional  microflowerbirnessite  (delta-MnO 2)  and  its
                                                                   efficient  oxidative  degradation  of  rhodamine  B[J].  RSC  Advances,
            好催化活性的前提下,制备出可通过外部磁场回收                                 2016, 6(28): 23905-23912.
                                                               [22]  Xue M, Huang L, Wang J Q, et al. The direct synthesis of mesoporous
            的磁性复合催化剂,实现高效重复回收利用的目的。                                structured  MnO 2/TiO 2  nanocomposite:  A  novel  visible-light  active
                                                                   photocatalyst with large pore size[J]. Nanotechnology, 2008, 19(18):
                                                                   185604.
            参考文献:                                              [23]  Wang L, Wang W, Huang X, et al. Preparation of p–n junction Cu 2O/
            [1]   Pung  S,  Chan  Y,  Sreekantan  S,  et al.  Photocatalytic  activity  of   BiVO 4  heterogeneous  nanostructures  with  enhanced  visible-light
                 ZnO-MnO 2 core shell nanocomposite in degradation of RhB dye[J].   photocatalytic activity[J]. Applied Catalysis B: Environmental, 2013,
                 Pigment & Resin Technology, 2016, 45(6): 408-418.     134/135: 293-301.
            [2]   Fei  J  B,  Cui  Y,  Yan  X  H,  et al.  Controlled  preparation  of  MnO 2   [24]  Wang Y, Sun H, Ang H M, et al. 3D-hierarchically structured MnO 2
                 hierarchical  hollow  nanostructures  and  their  application  in  water   for  catalytic  oxidation  of  phenol  solutions  by  activation  of
                 treatment[J]. Advanced Materials, 2010, 20(3): 452-456.     peroxymonosulfate:  Structure  dependence  and  mechanism[J].
            [3]   Boppana  V  B  R,  Jiao  F,  Yusuf  S,  et al.  Nanostructured  alkaline-   Applied Catalysis B-Environmental, 2015, 164: 159-167.
                 cation-containing  δ-MnO 2  for  photocatalytic  water  oxidation[J].   [25]  Xiao  W,  Wang  D,  Lou  X  W.  Shape-controlled  synthesis  of  MnO 2
                 Advanced Functional Materials, 2013, 23(7): 878-884.     nanostructures  with  enhanced  electrocatalytic  activity  for  oxygen
            [4]   Soltani  T,  Entezari  M  H.  Sono-synthesis  of  bismuth  ferrite   reduction[J]. Journal of Physical Chemistry C, 2009, 114(3): 1430-
                 nanoparticles  with  high  photocatalytic  activity  in  degradation  of   1434.
                 Rhodamine B under solar light irradiation[J]. Chemical Engineering   [26]  He Y, Jiang D B,  Chen J, et al. Synthesis of MnO 2 nanosheets on
                 Journal, 2013, 223: 145-154.                      montmorillonite  for  oxidative  degradation  and  adsorption  of
            [5]   Wang M, Guo P, Chai T, et al. Effects of Cu dopants on the structures   methylene  blue[J].  Journal  of  Colloid  and  Interface  Science,  2018,
                 and  photocatalytic  performance  of  cocoon-like  Cu-BiVO 4  prepared   510: 207-220.
                 via  ethylene  glycol  solvothermal  method[J].  Journal  of  Alloys  and   [27]  Zhang Y X, Huang M, Li F, et al. One-pot synthesis of hierarchical
                 Compounds, 2017, 691: 8-14.                       MnO 2-modified   diatomites   for   electrochemical   capacitor
            [6]   Zhang A, Zhang J. Effects of europium doping on the photocatalytic   electrodes[J]. Journal of Power Sources, 2014, 246: 449-456.
                 behavior  of  BiVO 4[J].  Journal  of  Hazardous  Materials,  2010,   [28]  Zhai  Y,  Yin  Y,  Liu  X, et al.  Novel  magnetically  separable  BiVO 4/
                 173(1/2/3): 265-272.                              Fe 3O 4 photocatalyst: Synthesis and photocatalytic performance under
            [7]   Liu  Renyue  (刘仁月), Wu  Zhen (吴榛), Bai Yu  (白羽),  et al.   visible-light  irradiation[J].  Materials  Research  Bulletin,  2017,  89:
                 Preparation, characterization and photocatalytic mechanism of Ag 2CO 3/   297-306.
                 BiVO 4  composite  microsheets[J].  Nonferrous  Metals  Science  and   [29]  Kumar N, Sen A, Rajendran K, et al. Morphology and phase tuning
                 Engineering (有色金属科学与工程), 2016, 7(6): 62-72.       of α- and β-MnO 2 nanocacti evolved at varying modes of acid count
            [8]   Li H, Zhang J, Huang G, et al. Hydrothermal synthesis and enhanced   for  their  well-coordinated  energy  storage  and  visible-light-driven
                                                                   photocatalytic  behaviour[J].  Rsc  Advances,  2017,  7(40):  25041-
                 photocatalytic  activity  of  hierarchical  flower-like  Fe-doped  BiVO 4
                 [J]. Transactions of Nonferrous Metals Society of China, 2017, 27(4):   25053.
                 868-875.                                      [30]  Liu  Y,  Chen  Z,  Shek  C,  et al.  Hierarchical  mesoporous  MnO 2
            [9]   Wang  M,  Yang  G,  You  M,  et al.  Effects  of  Ni  doping  contents  on   superstructures  synthesized  by  soft-interface  method  and  their
                 photocatalytic activity of B-BiVO 4 synthesized through sol-gel and   catalytic  performances[J].  ACS  Applied  Materials  &  Interfaces,
                 impregnation two-step method[J]. Transactions of Nonferrous Metals   2014, 6(12): 9776-9784.
                 Society of China, 2017, 27(9): 2022-2030.     [31]  Zhang  Yu  (张宇),  Wang  Min  (王敏),  Zhou  Xin  (周鑫),  et al.
            [10]  Shang  Yi  (尚义),  Niu  Fujun  (牛富军),  Shen  Shaohua  (沈少华).   Synthesis  and  efficient  visible  light  photocatalytic  activity  of
                 Photocatalytic water oxidation over BiVO 4 with interface energetics   AgVO 3/BiVO 4  composite  photocatalysts[J].  Journal  of  the  Chinese
                 engineered  by  Co  and  Ni-metallated  dicyanamides[J].  Chinese   Ceramic Society (硅酸盐学报), 2019, (1): 125-131.
                 Journal of Catalysis (催化学报), 2018, 39(3): 502-509.     [32]  Wang M, Niu C, Liu Q, et al. Enhanced photo-degradation methyl
            [11]  Moscow  S,  Jothivenkatachalam  K.  Facile  microwave  assisted   orange  by  N-F  co-doped  BiVO 4  synthesized  by  sol-gel  method[J].
                 synthesis of floral-shaped BiVO 4 nano particles for their photocatalytic   Materials  Science  in  Semiconductor  Processing,  2014,  25(S1):
                 and  photoelectrochemical  performances[J].  Journal  of  Materials   271-278.
                 Science: Materials in Electronics, 2016, 27(2): 1433-1443.     [33]  Liu S,  Liu  H, Jin G,  et al.  Preparation  of  a  novel  flower-like
            [12]  Jiang Haiyan (蒋海燕), Dai Hongxing (戴洪兴), Meng Xue (孟雪),   MnO 2/BiOI  composite  with  highly  enhanced  adsorption  and
                 et al. Morphology-dependent photocatalytic performance of monoclinic   photocatalytic activity[J]. RSC Advances, 2015, 5(57): 45646-45653.
                 BiVO 4 for methyl orange degradation under visible-light irradiation   [34]  Sutthiumporn K, Kawi S. Promotional effect of alkaline earth over
                 [J]. Chinese Journal of Catalysis (催化学报), 2011, 32(6): 939-949   Ni-La 2O 3 catalyst for CO 2 reforming of CH 4: Role of surface oxygen
            [13]  Wang  L,  Gu  X,  Zhao  Y,  et al.  Enhanced  photoelectrochemical   species  on  H 2  production  and  carbon  suppression[J].  International
                 performance by doping Mo into BiVO 4 lattice[J]. Journal of Materials   Journal of Hydrogen Energy, 2011, 36(22): 14435-14446.
                 Science-Materials in Electronics, 2018, 29(22): 19278-19286.     [35]  Hang  S,  Xu  K,  Huang  M,  et al.  One-pot  synthesis  of  ultrathin
            [14]  Suo  Jing  (索静), Liu Lifen (柳丽芬),  Yang  Fenglin  (杨凤林).   manganese  dioxide  nanosheets  and  their  efficient  oxidative
                 Preparation of supported Cu-BiVO 4 photocatalyst and its application   degradation of Rhodamine B[J]. Applied Surface Science, 2015, 357:
                 in oxidative removal of toluene in air[J]. Chinese Journal of Catalysis   69-73.
   189   190   191   192   193   194   195   196   197   198   199