Page 194 - 精细化工2019年第9期
P. 194
·1922· 精细化工 FINE CHEMICALS 第 36 卷
构未发生改变,且构成了较大的孔径结构以及比表 (催化学报), 2009, 30(4): 323-327.
[15] Kim K, Moon J H. Three-dimensional bicontinuous BiVO 4/ZnO
面积,均有利于分子尺寸为 1.59 nm1.18 nm photoanodes for high solar water-splitting performance at low bias
potential[J]. ACS Applied Materials & Interfaces, 2018, 10(40):
0.56 nm 的 RhB 扩散和吸附;BiVO 4 复合 MnO 2 二者 34238-34244.
[16] Liu Qiongjun (刘琼君), Lin Bizhou (林碧洲), Li Peipei (李培培), et
之间发生了电子耦合作用,减弱了 BiVO 4 的荧光强 al. Preparation of BiPO 4 /BiVO 4 composites with high visible-light
度,表明复合 MnO 2 能有效地抑制光生电子和空穴 photocatalytic activity[J]. Chemical Research in Chinese Universities
(高等学校化学研究), 2017, 38(1): 94-100.
的复合,提高了量子的利用效率,使得复合材料较 [17] Guan M, Ma D, Hu S, et al. From hollow olive-shaped BiVO 4 to n-p
core-shell BiVO 4@Bi 2O 3 microspheres: Controlled synthesis and
单独的 BiVO 4 或 MnO 2 ,对 RhB 有更好的催化降解 enhanced visible-light-responsive photocatalytic properties[J]. Inorganic
Chemistry, 2011, 50(3): 800.
效果。 [18] Wetchakun N, Chaiwichain S, Inceesungvorn B, et al. BiVO 4/CeO 2
nanocomposites with high visible-light-induced photocatalytic
(2)当 m(MnO 2 )∶m(BiVO 4 )=10∶100 时,光催 activity[J]. ACS Applied Materials & Interfaces, 2012, 4(7): 3718-
化效果最好,光照 3 h 对 10 mg/L 的 RhB(100 mL) 3723.
[19] Li J, Cui M, Guo Z, et al. Preparation of p–n junction BiVO 4/Ag 2O
的降解率达到 97.8%。经过 3 次套用,降解率仍 heterogeneous nanostructures with enhanced visible-light photocatalytic
activity[J]. Materials Letters, 2015, 151: 75-78.
能达到 91.7%,表明 BiVO 4 -MnO 2 有很好的催化稳 [20] Trzcinski K, Szkoda M, Sawczak M, et al. Visible visible light
activity of pulsed layer deposited BiVO 4/MnO 2 films decorated with
定性。 gold nanoparticles: The evidence for hydroxyl radicals formation[J].
Applied Surface Science, 2016, 385: 199-208.
(3)复合材料 BiVO 4 -MnO 2 催化反应后不易于 [21] Qin M, Zhao H, Yang W, et al. A facile one-pot synthesis of
回收,下一步希望在保持复合材料 BiVO 4 -MnO 2 良 three-dimensional microflowerbirnessite (delta-MnO 2) and its
efficient oxidative degradation of rhodamine B[J]. RSC Advances,
好催化活性的前提下,制备出可通过外部磁场回收 2016, 6(28): 23905-23912.
[22] Xue M, Huang L, Wang J Q, et al. The direct synthesis of mesoporous
的磁性复合催化剂,实现高效重复回收利用的目的。 structured MnO 2/TiO 2 nanocomposite: A novel visible-light active
photocatalyst with large pore size[J]. Nanotechnology, 2008, 19(18):
185604.
参考文献: [23] Wang L, Wang W, Huang X, et al. Preparation of p–n junction Cu 2O/
[1] Pung S, Chan Y, Sreekantan S, et al. Photocatalytic activity of BiVO 4 heterogeneous nanostructures with enhanced visible-light
ZnO-MnO 2 core shell nanocomposite in degradation of RhB dye[J]. photocatalytic activity[J]. Applied Catalysis B: Environmental, 2013,
Pigment & Resin Technology, 2016, 45(6): 408-418. 134/135: 293-301.
[2] Fei J B, Cui Y, Yan X H, et al. Controlled preparation of MnO 2 [24] Wang Y, Sun H, Ang H M, et al. 3D-hierarchically structured MnO 2
hierarchical hollow nanostructures and their application in water for catalytic oxidation of phenol solutions by activation of
treatment[J]. Advanced Materials, 2010, 20(3): 452-456. peroxymonosulfate: Structure dependence and mechanism[J].
[3] Boppana V B R, Jiao F, Yusuf S, et al. Nanostructured alkaline- Applied Catalysis B-Environmental, 2015, 164: 159-167.
cation-containing δ-MnO 2 for photocatalytic water oxidation[J]. [25] Xiao W, Wang D, Lou X W. Shape-controlled synthesis of MnO 2
Advanced Functional Materials, 2013, 23(7): 878-884. nanostructures with enhanced electrocatalytic activity for oxygen
[4] Soltani T, Entezari M H. Sono-synthesis of bismuth ferrite reduction[J]. Journal of Physical Chemistry C, 2009, 114(3): 1430-
nanoparticles with high photocatalytic activity in degradation of 1434.
Rhodamine B under solar light irradiation[J]. Chemical Engineering [26] He Y, Jiang D B, Chen J, et al. Synthesis of MnO 2 nanosheets on
Journal, 2013, 223: 145-154. montmorillonite for oxidative degradation and adsorption of
[5] Wang M, Guo P, Chai T, et al. Effects of Cu dopants on the structures methylene blue[J]. Journal of Colloid and Interface Science, 2018,
and photocatalytic performance of cocoon-like Cu-BiVO 4 prepared 510: 207-220.
via ethylene glycol solvothermal method[J]. Journal of Alloys and [27] Zhang Y X, Huang M, Li F, et al. One-pot synthesis of hierarchical
Compounds, 2017, 691: 8-14. MnO 2-modified diatomites for electrochemical capacitor
[6] Zhang A, Zhang J. Effects of europium doping on the photocatalytic electrodes[J]. Journal of Power Sources, 2014, 246: 449-456.
behavior of BiVO 4[J]. Journal of Hazardous Materials, 2010, [28] Zhai Y, Yin Y, Liu X, et al. Novel magnetically separable BiVO 4/
173(1/2/3): 265-272. Fe 3O 4 photocatalyst: Synthesis and photocatalytic performance under
[7] Liu Renyue (刘仁月), Wu Zhen (吴榛), Bai Yu (白羽), et al. visible-light irradiation[J]. Materials Research Bulletin, 2017, 89:
Preparation, characterization and photocatalytic mechanism of Ag 2CO 3/ 297-306.
BiVO 4 composite microsheets[J]. Nonferrous Metals Science and [29] Kumar N, Sen A, Rajendran K, et al. Morphology and phase tuning
Engineering (有色金属科学与工程), 2016, 7(6): 62-72. of α- and β-MnO 2 nanocacti evolved at varying modes of acid count
[8] Li H, Zhang J, Huang G, et al. Hydrothermal synthesis and enhanced for their well-coordinated energy storage and visible-light-driven
photocatalytic behaviour[J]. Rsc Advances, 2017, 7(40): 25041-
photocatalytic activity of hierarchical flower-like Fe-doped BiVO 4
[J]. Transactions of Nonferrous Metals Society of China, 2017, 27(4): 25053.
868-875. [30] Liu Y, Chen Z, Shek C, et al. Hierarchical mesoporous MnO 2
[9] Wang M, Yang G, You M, et al. Effects of Ni doping contents on superstructures synthesized by soft-interface method and their
photocatalytic activity of B-BiVO 4 synthesized through sol-gel and catalytic performances[J]. ACS Applied Materials & Interfaces,
impregnation two-step method[J]. Transactions of Nonferrous Metals 2014, 6(12): 9776-9784.
Society of China, 2017, 27(9): 2022-2030. [31] Zhang Yu (张宇), Wang Min (王敏), Zhou Xin (周鑫), et al.
[10] Shang Yi (尚义), Niu Fujun (牛富军), Shen Shaohua (沈少华). Synthesis and efficient visible light photocatalytic activity of
Photocatalytic water oxidation over BiVO 4 with interface energetics AgVO 3/BiVO 4 composite photocatalysts[J]. Journal of the Chinese
engineered by Co and Ni-metallated dicyanamides[J]. Chinese Ceramic Society (硅酸盐学报), 2019, (1): 125-131.
Journal of Catalysis (催化学报), 2018, 39(3): 502-509. [32] Wang M, Niu C, Liu Q, et al. Enhanced photo-degradation methyl
[11] Moscow S, Jothivenkatachalam K. Facile microwave assisted orange by N-F co-doped BiVO 4 synthesized by sol-gel method[J].
synthesis of floral-shaped BiVO 4 nano particles for their photocatalytic Materials Science in Semiconductor Processing, 2014, 25(S1):
and photoelectrochemical performances[J]. Journal of Materials 271-278.
Science: Materials in Electronics, 2016, 27(2): 1433-1443. [33] Liu S, Liu H, Jin G, et al. Preparation of a novel flower-like
[12] Jiang Haiyan (蒋海燕), Dai Hongxing (戴洪兴), Meng Xue (孟雪), MnO 2/BiOI composite with highly enhanced adsorption and
et al. Morphology-dependent photocatalytic performance of monoclinic photocatalytic activity[J]. RSC Advances, 2015, 5(57): 45646-45653.
BiVO 4 for methyl orange degradation under visible-light irradiation [34] Sutthiumporn K, Kawi S. Promotional effect of alkaline earth over
[J]. Chinese Journal of Catalysis (催化学报), 2011, 32(6): 939-949 Ni-La 2O 3 catalyst for CO 2 reforming of CH 4: Role of surface oxygen
[13] Wang L, Gu X, Zhao Y, et al. Enhanced photoelectrochemical species on H 2 production and carbon suppression[J]. International
performance by doping Mo into BiVO 4 lattice[J]. Journal of Materials Journal of Hydrogen Energy, 2011, 36(22): 14435-14446.
Science-Materials in Electronics, 2018, 29(22): 19278-19286. [35] Hang S, Xu K, Huang M, et al. One-pot synthesis of ultrathin
[14] Suo Jing (索静), Liu Lifen (柳丽芬), Yang Fenglin (杨凤林). manganese dioxide nanosheets and their efficient oxidative
Preparation of supported Cu-BiVO 4 photocatalyst and its application degradation of Rhodamine B[J]. Applied Surface Science, 2015, 357:
in oxidative removal of toluene in air[J]. Chinese Journal of Catalysis 69-73.