Page 175 - 《精细化工》2020年第1期
P. 175

第 1 期                    黄凤萍,等:  复合纳米棒状 Ag 3 PO 4 /ZnO 材料的光催化性能                          ·161·


                                                                   ZnO/Fe 2O 3 nanotube composites[J]. Materials Science and Engineering:
                                                                   B, 2015, 29: 9-13.
                                                               [12]  Chang Y C. Complex ZnO/ZnS nanocable and nanotube arrays with
                                                                   high  performance  photocatalytic  activity[J].  Journal  of  Alloys  and
                                                                   Compounds, 2016, 664: 538-546.
                                                               [13]  Jana  T  K,  Pal  A,  Chatterjee  K.  Self  assembled  like  CdS-ZnO
                                                                   nanocomposite and its photo catalytic activity[J]. Journal of Alloys
                                                                   and Compounds, 2014, 583: 510-515.
                                                               [14]  Wang  C  L,  Tan  X,  Yan  J  T.  Electrospinning  direct  synthesis of
                                                                   magnetic  ZnFe 2O 4/ZnO  multi-porous  nanotubes  with  enhanced
                                                                   photocatalyticactivity[J].  Applied  Surface  Science,  2017,  396:  780-
                                                                   790.
                                                               [15]  Yin H L, Yu K, Song C Q. Synthesis of Au-decorated V 2O 5@ZnO
                                                                   heteronanostructures  and  enhanced  plasmonic  photocatalytic
                                                                   activity[J].  ACS  Applied  Materials  Interfaces,  2014,  6(17):  14851-
                                                                   14860.
                                                               [16]  Martha S, Reddy K H, Parida K M. Fabrication of In 2O 3 modified
               图 9    光降解前后 Ag 3 PO 4 /ZnO 复合材料 XRD 图谱             ZnO for enhancing stability, optical behaviour, electronic properties
            Fig. 9    XRD patterns of Ag 3 PO 4 /ZnO composite before and   and  photocatalytic  activity  for  hydrogen  production  under  visible
                   after the photocatalytic reaction               light[J]. Journal of Materials Chemistry A, 2014, 16(32): 3621-3631.
                                                               [17]  Tang  C  N.g-C 3N 4/Ag 3PO 4  preparation  of  composites  and  their
                                                                   photocatalytic  activity  for  nitrogen  oxide  removal  [J].  Chemical
            3    结论                                                Engineer,2018,32(12):1-5.
                                                               [18]  Li  J  Q, Guo  Z  Y, Liu Z X.  Ag 3PO 4/TiO 2heterostructures  with
                                                                   enhanced  photocatalyticactivity[J].  Physica  Status  Solidi,  2015,
                 通过原位生长法合成了纳米棒状 Ag 3 PO 4 /ZnO                     (212): 459-466.
                                                               [19]  Gao  Ya  (高雅),  Chen  Jun  (陈俊),  Lu  Xuequan  (卢学全),  et al.
            复合材料,得到如下结论:(1)利用水热法合成的                                Preparation  of  Ag 3PO 4/ZnO  composite  photocatalyst  and  its
                                                                   degradation  of  rhodamine  B[J].  Journal  of  Jiamusi  University
            纳米棒状 ZnO,提高了比表面积,为纳米 Ag 3 PO 4                         (Natural  Science  Edition)  (佳木斯大学学报:  自然科学版),  2017,
                                                                   35(6): 983-986.
            提供大量的担载位点;(2)Ag 3 PO 4 与 ZnO 形成了
                                                               [20]  Gao  Ya  (高雅),  Chen  Jun  (陈俊),  Lu  Xuequan  (卢学全),  et al.
            异质结结构,有效抑制了电子-空穴的复合,提高                                 Preparation of Ag 3PO 4/ZnO composite powder and Its photocatalytic
                                                                   activity[J].  Journal  of  Synthetic  Crystals  (人工晶体学报),  2017,
            了光催化活性,而且其稳定性也得到了很大改善;                                 46(9): 1842-1845.
                                                               [21]  Guo Yuwei (郭玉玮), Liu Wenfang (刘文芳), Ding Yongping (丁永
            (3)Ag 3 PO 4 /ZnO 复合材料在可见光范围内有明显                       萍 ),  et al.  Preparation  of  Ag 3PO 4/ZnO  composites  and  their
                                                                   degradation  of  methyl  orange[J].  Journal  of  Sichuan  University
            的吸收带,在可见光照下会激发生成更多的电子和                                 (Natural Science Edition)(四川大学学报:  自然科学版)2016, 53(6):
                                                                   1329-1334.
            空穴,大大提高了其光催化效果。                                    [22]  Lu J,   Wang H H, Dong Y F. Plasmonic AgX nanoparticles-modified
                 本文所合成的 Ag 3 PO 4 /ZnO 复合材料制备方法                    ZnO  nanorod  arrays  and  their  visible-light-driven  photocatalytic
                                                                   activity[J]. Chinese Journal of Catalysis, 2014, (35): 1113-1125.
            简单、操作简便、原料价格低廉,能够很好地解决                             [23]  Cao  W  R,  Chen  L  F,  Qi  Z  W.  Microwave-assisted  synthesis  of
                                                                   Ag/Ag 2SO 4/ZnO  nanostructures  for  efficient  visible-light-driven
            光催化性能较差的问题。但是,由于实验设备的限                                 photocatalysis[J]. Journal of Molecular Catalysis A: Chemical, 2015,
                                                                   401: 81-89.
            制,产业化还具有一定难度,需要进一步探索。                              [24]  Zheng  Y  H,  Zheng  L  R,  Zhan  Y  Y.  Ag/ZnO  heterostructure
                                                                   nanocrystals:  Synthesis,  characterization,  and  photocatalysis[J].
                                                                   Inorganic Chemistry, 2007, 17(46): 6980-6986.
            参考文献:                                              [25]  Duo  F  F,  Wang  Y  W,  Mao  X  M.  A  BiPO 4/BiOCl  heterojunction
            [1]   Sebastian  K,  Max  T,  Hanne  F.  Quantifying  the  promotion  of  Cu   photocatalyst  with  enhanced  electron-hole  separation  and  excellent
                 catalysts  by  ZnO  for  methanol  synthesis[J].  Science,  2016,   photocatalytic performance[J]. Applied Surface Science, 2015, 340:
                 352(6288): 969-974.                               35-42.
            [2]   Zhang  X  Y,  Qin J Q,  Xue  Y  N. Effect  of aspect ratio and  surface   [26]  Zhang Hui (张辉), Song Haiyan (宋海燕), Ruan Shuhong (阮舒红),
                 defects  on  the  photocatalytic  activity  of  ZnO  nanorods[J].  Science   et al.  Preparation  and  photocatalytic  activity  of  MoS 2@ZnO
                 Reports, 2014, 4: 4596. DOI: 10.1038/srep04596.   heterojunction  nanomaterials[J].  Journal  of  South  China  Normal
            [3]   Han  C,  Yang  M  Q,  Weng  B.  Improving  the  photocatalytic  activity   University  (Natural  Science  Edition)  (华南师范大学学报:  自然科
                 and  anti-photocorrosion  of  semiconductor  ZnO  by  coupling  with   学版), 2019, 51(1): 35-41.
                 versatile carbon[J]. Physical Chemistry, 2014, (16): 16891-16903.     [27]  Sun Y J, Miu J Z, Dong F, et al. Enhanced performance of visible
            [4]   Liu Y, Yu L, Hu Y. A magnetically separable photocatalyst based on   light  catalytic  reduction  of  Bi/BiOI/(BiO) 2CO 3  heterojunction[J].
                 nest-like  g-Fe 2O 3/ZnO  double-shelled  hollow  structures  with   Catalysis Journal, 2019, 40(3): 363-371.
                 enhanced photocatalytic activity[J]. Nanoscale, 2012, (4): 183-187.     [28]  Liu S, Zhao M Y, He Z T, et al. Preparation of two- dimensional BiOI
            [5]   Lei C S, Pi M, Jiang C J. Synthesis of hierarchical porous zinc oxide   nanosheet/one-dimensional  BiPO 4  nanorod p-n  heterojunction
                 (ZnO) microspheres with highly efficient adsorption of Congo red[J].   composite electrode for enhancing visible light photoelectrocatalytic
                                                                   activity[J]. Catalysis Journal, 2019, 40(3): 446- 457.
                 Journal of Colloid and Interface Science, 2017, 490: 242-251.
            [6]   Chen  Y  Z,  Zeng  D  Q,  Zhang  Q.  Au-ZnO  hybrid  nanoflowers,   [29]  Guan X J, Guo L J. Cocatalytic effect of SrTiO 3 on Ag 3PO 4 toward
                                                                   enhanced  photocatalytic  water  oxidation[J],  ACS  Catalysis,  2014,
                 nanomultipods  and  nanopyramids:  One-pot  reaction  synthesis  and   (9): 3020-3026.
                 photocatalytic properties[J]. Nanoscale, 2014, (6): 874-881.     [30]  Zhong  J  B,  Li  J  Z,  Wang  T.  Improved  solar-driven  photocatalytic
            [7]   Eliza R, Omid A. Improving the photocatalytic activity of graphene   performance  of  Ag 3PO 4/ZnO  composites  benefiting  from  enhanced
                 oxide/ZnO  nanorod  films  by  UV  irradiation[J].  Applied  Surface   charge  separation  with  a  typical  Z-scheme  mechanism[J].  Applied
                 Science, 2016, 371: 590-595.                      Physics A Materials Science & Processing, 2016, 122: 4.
            [8]   Dong  C,  Wu  K  L,  Li  M  R.  Synthesis  of  Ag 3PO 4-ZnO  nanorod   [31]  Wang  Y,  Zhang  J  W,  Liu  L  X.  Visible  light  photocatalysis  of
                 composites with high visible-light photocatalytic activity[J]. Catalysis   V 2O 5/TiO 2  nanoheterostructures  prepared  via  electrospinning[J].
                 Communications, 2014, (46): 32-35.                Materials Letters, 2012, 75: 95-98.
            [9]   Peng F P, Nia Y R, Zhou Q. Construction of ZnO nanosheet arrays   [32]  Zhang L S, Wong K H, Yi H Y. Effective photocatalytic disinfection
                 within BiVO 4 particles on a conductive magnetically driven cilia film   of E. coli K-12 using AgBr-Ag-Bi 2WO 6 nanojunction system irradiated
                 with  enhanced  visible  photocatalytic  activity[J].  Journal  of  Alloys   by  visible  light:  the  role  of  diffusing  hydroxyl  radicals[J].
                 and Compounds, 2017, 690: 953-960.                Environmental Science &Technology, 2010, 44(4): 1392-1398.
            [10]  Wang J, Xia Y, Dong Y. Defect-rich ZnO nanosheets of high surface   [33]  Cao  W  R,  Chen  L  F,  Qi  Z  W.  Microwave-assisted  synthesis  of
                 area  as  an  efficient  visible-light  photocatalyst[J].  Applied  Catalysis   Ag/Ag 2SO 4/ZnO  nanostructures  for  efficient  visible-light-driven
                 B: Environmental, 2016, 192: 8-16.                photocatalysis[J]. Journal of Molecular Catalysis A: Chemical, 2015,
            [11]  Liu Y J, Sun L, Wu J G. Preparation and photocatalytic activity of   401: 81-89.
   170   171   172   173   174   175   176   177   178   179   180