Page 175 - 《精细化工》2020年第1期
P. 175
第 1 期 黄凤萍,等: 复合纳米棒状 Ag 3 PO 4 /ZnO 材料的光催化性能 ·161·
ZnO/Fe 2O 3 nanotube composites[J]. Materials Science and Engineering:
B, 2015, 29: 9-13.
[12] Chang Y C. Complex ZnO/ZnS nanocable and nanotube arrays with
high performance photocatalytic activity[J]. Journal of Alloys and
Compounds, 2016, 664: 538-546.
[13] Jana T K, Pal A, Chatterjee K. Self assembled like CdS-ZnO
nanocomposite and its photo catalytic activity[J]. Journal of Alloys
and Compounds, 2014, 583: 510-515.
[14] Wang C L, Tan X, Yan J T. Electrospinning direct synthesis of
magnetic ZnFe 2O 4/ZnO multi-porous nanotubes with enhanced
photocatalyticactivity[J]. Applied Surface Science, 2017, 396: 780-
790.
[15] Yin H L, Yu K, Song C Q. Synthesis of Au-decorated V 2O 5@ZnO
heteronanostructures and enhanced plasmonic photocatalytic
activity[J]. ACS Applied Materials Interfaces, 2014, 6(17): 14851-
14860.
[16] Martha S, Reddy K H, Parida K M. Fabrication of In 2O 3 modified
图 9 光降解前后 Ag 3 PO 4 /ZnO 复合材料 XRD 图谱 ZnO for enhancing stability, optical behaviour, electronic properties
Fig. 9 XRD patterns of Ag 3 PO 4 /ZnO composite before and and photocatalytic activity for hydrogen production under visible
after the photocatalytic reaction light[J]. Journal of Materials Chemistry A, 2014, 16(32): 3621-3631.
[17] Tang C N.g-C 3N 4/Ag 3PO 4 preparation of composites and their
photocatalytic activity for nitrogen oxide removal [J]. Chemical
3 结论 Engineer,2018,32(12):1-5.
[18] Li J Q, Guo Z Y, Liu Z X. Ag 3PO 4/TiO 2heterostructures with
enhanced photocatalyticactivity[J]. Physica Status Solidi, 2015,
通过原位生长法合成了纳米棒状 Ag 3 PO 4 /ZnO (212): 459-466.
[19] Gao Ya (高雅), Chen Jun (陈俊), Lu Xuequan (卢学全), et al.
复合材料,得到如下结论:(1)利用水热法合成的 Preparation of Ag 3PO 4/ZnO composite photocatalyst and its
degradation of rhodamine B[J]. Journal of Jiamusi University
纳米棒状 ZnO,提高了比表面积,为纳米 Ag 3 PO 4 (Natural Science Edition) (佳木斯大学学报: 自然科学版), 2017,
35(6): 983-986.
提供大量的担载位点;(2)Ag 3 PO 4 与 ZnO 形成了
[20] Gao Ya (高雅), Chen Jun (陈俊), Lu Xuequan (卢学全), et al.
异质结结构,有效抑制了电子-空穴的复合,提高 Preparation of Ag 3PO 4/ZnO composite powder and Its photocatalytic
activity[J]. Journal of Synthetic Crystals (人工晶体学报), 2017,
了光催化活性,而且其稳定性也得到了很大改善; 46(9): 1842-1845.
[21] Guo Yuwei (郭玉玮), Liu Wenfang (刘文芳), Ding Yongping (丁永
(3)Ag 3 PO 4 /ZnO 复合材料在可见光范围内有明显 萍 ), et al. Preparation of Ag 3PO 4/ZnO composites and their
degradation of methyl orange[J]. Journal of Sichuan University
的吸收带,在可见光照下会激发生成更多的电子和 (Natural Science Edition)(四川大学学报: 自然科学版)2016, 53(6):
1329-1334.
空穴,大大提高了其光催化效果。 [22] Lu J, Wang H H, Dong Y F. Plasmonic AgX nanoparticles-modified
本文所合成的 Ag 3 PO 4 /ZnO 复合材料制备方法 ZnO nanorod arrays and their visible-light-driven photocatalytic
activity[J]. Chinese Journal of Catalysis, 2014, (35): 1113-1125.
简单、操作简便、原料价格低廉,能够很好地解决 [23] Cao W R, Chen L F, Qi Z W. Microwave-assisted synthesis of
Ag/Ag 2SO 4/ZnO nanostructures for efficient visible-light-driven
光催化性能较差的问题。但是,由于实验设备的限 photocatalysis[J]. Journal of Molecular Catalysis A: Chemical, 2015,
401: 81-89.
制,产业化还具有一定难度,需要进一步探索。 [24] Zheng Y H, Zheng L R, Zhan Y Y. Ag/ZnO heterostructure
nanocrystals: Synthesis, characterization, and photocatalysis[J].
Inorganic Chemistry, 2007, 17(46): 6980-6986.
参考文献: [25] Duo F F, Wang Y W, Mao X M. A BiPO 4/BiOCl heterojunction
[1] Sebastian K, Max T, Hanne F. Quantifying the promotion of Cu photocatalyst with enhanced electron-hole separation and excellent
catalysts by ZnO for methanol synthesis[J]. Science, 2016, photocatalytic performance[J]. Applied Surface Science, 2015, 340:
352(6288): 969-974. 35-42.
[2] Zhang X Y, Qin J Q, Xue Y N. Effect of aspect ratio and surface [26] Zhang Hui (张辉), Song Haiyan (宋海燕), Ruan Shuhong (阮舒红),
defects on the photocatalytic activity of ZnO nanorods[J]. Science et al. Preparation and photocatalytic activity of MoS 2@ZnO
Reports, 2014, 4: 4596. DOI: 10.1038/srep04596. heterojunction nanomaterials[J]. Journal of South China Normal
[3] Han C, Yang M Q, Weng B. Improving the photocatalytic activity University (Natural Science Edition) (华南师范大学学报: 自然科
and anti-photocorrosion of semiconductor ZnO by coupling with 学版), 2019, 51(1): 35-41.
versatile carbon[J]. Physical Chemistry, 2014, (16): 16891-16903. [27] Sun Y J, Miu J Z, Dong F, et al. Enhanced performance of visible
[4] Liu Y, Yu L, Hu Y. A magnetically separable photocatalyst based on light catalytic reduction of Bi/BiOI/(BiO) 2CO 3 heterojunction[J].
nest-like g-Fe 2O 3/ZnO double-shelled hollow structures with Catalysis Journal, 2019, 40(3): 363-371.
enhanced photocatalytic activity[J]. Nanoscale, 2012, (4): 183-187. [28] Liu S, Zhao M Y, He Z T, et al. Preparation of two- dimensional BiOI
[5] Lei C S, Pi M, Jiang C J. Synthesis of hierarchical porous zinc oxide nanosheet/one-dimensional BiPO 4 nanorod p-n heterojunction
(ZnO) microspheres with highly efficient adsorption of Congo red[J]. composite electrode for enhancing visible light photoelectrocatalytic
activity[J]. Catalysis Journal, 2019, 40(3): 446- 457.
Journal of Colloid and Interface Science, 2017, 490: 242-251.
[6] Chen Y Z, Zeng D Q, Zhang Q. Au-ZnO hybrid nanoflowers, [29] Guan X J, Guo L J. Cocatalytic effect of SrTiO 3 on Ag 3PO 4 toward
enhanced photocatalytic water oxidation[J], ACS Catalysis, 2014,
nanomultipods and nanopyramids: One-pot reaction synthesis and (9): 3020-3026.
photocatalytic properties[J]. Nanoscale, 2014, (6): 874-881. [30] Zhong J B, Li J Z, Wang T. Improved solar-driven photocatalytic
[7] Eliza R, Omid A. Improving the photocatalytic activity of graphene performance of Ag 3PO 4/ZnO composites benefiting from enhanced
oxide/ZnO nanorod films by UV irradiation[J]. Applied Surface charge separation with a typical Z-scheme mechanism[J]. Applied
Science, 2016, 371: 590-595. Physics A Materials Science & Processing, 2016, 122: 4.
[8] Dong C, Wu K L, Li M R. Synthesis of Ag 3PO 4-ZnO nanorod [31] Wang Y, Zhang J W, Liu L X. Visible light photocatalysis of
composites with high visible-light photocatalytic activity[J]. Catalysis V 2O 5/TiO 2 nanoheterostructures prepared via electrospinning[J].
Communications, 2014, (46): 32-35. Materials Letters, 2012, 75: 95-98.
[9] Peng F P, Nia Y R, Zhou Q. Construction of ZnO nanosheet arrays [32] Zhang L S, Wong K H, Yi H Y. Effective photocatalytic disinfection
within BiVO 4 particles on a conductive magnetically driven cilia film of E. coli K-12 using AgBr-Ag-Bi 2WO 6 nanojunction system irradiated
with enhanced visible photocatalytic activity[J]. Journal of Alloys by visible light: the role of diffusing hydroxyl radicals[J].
and Compounds, 2017, 690: 953-960. Environmental Science &Technology, 2010, 44(4): 1392-1398.
[10] Wang J, Xia Y, Dong Y. Defect-rich ZnO nanosheets of high surface [33] Cao W R, Chen L F, Qi Z W. Microwave-assisted synthesis of
area as an efficient visible-light photocatalyst[J]. Applied Catalysis Ag/Ag 2SO 4/ZnO nanostructures for efficient visible-light-driven
B: Environmental, 2016, 192: 8-16. photocatalysis[J]. Journal of Molecular Catalysis A: Chemical, 2015,
[11] Liu Y J, Sun L, Wu J G. Preparation and photocatalytic activity of 401: 81-89.