Page 44 - 《精细化工》2020年 第10期
P. 44

·1974·                            精细化工   FINE CHEMICALS                                 第 37 卷

            [12]  BAI  L,  HUAN  S  Q,  XIANG  W  C,  et al.  Pickering  emulsions  by   methylcellulose to hydroxypropylmethylcellulose solution properties
                 combining cellulose nanofibrils and nanocrystals: Phase behavior and   induced  by  a  low-molecular-weight  oxyethylene  additive[J].
                 depletion stabilization[J]. Green Chemistry, 2018, 20(7): 1571-1582.     Langmuir, 2012, 28(38): 13562-13569.
            [13]  LI  Z, BAI B J,  XU D R,  et al.  Synergistic  collaboration  between   [31]  HUANG X J, LI Q J, LIU H, et al. Oil-in-water emulsions stabilized
                 regenerated  cellulose  and  surfactant  to  stabilize  oil/water  (O/W)   by  saponified  epoxidized  soybean  oil-grafted  hydroxyethyl
                 emulsions  for  enhancing  oil  recovery[J].  Energy  &  Fuels,  2018,   cellulose[J].  Journal  of  Agricultural  and  Food  Chemistry,  2017,
                 33(1): 81-88.                                     65(17): 3497- 3504.
            [14]  TRIGUEIRO J P, SILVA G G, PEREIRA F V, et al. Layer-by-layer   [32]  MAHMOOD  K,  KAMILAH  H,  SHANG  P  L,  et al.  A  review:
                 assembled films of multi-walled carbon nanotubes with chitosan and   Interaction of starch/non-starch hydrocolloid blending and the recent
                 cellulose  nanocrystals[J].  Journal  of  Colloid  and  Interface  Science,   food applications[J]. Food Bioscience, 2017, 19: 110-120.
                 2014, 432: 214-220.                           [33]  YULIANINGSIH  R,  GOHTANI  S.  Dispersion  characteristics  of
            [15]  HAJIAN  A,  LINDSTROM  S  B,  PETTERSSON  T,  et al.   pregelatinized waxy rice starch and its performance as an emulsifier
                 Understanding  the  dispersive  action  of  nanocellulose  for  carbon   for oil-in-water emulsions: Effect of gelatinization temperature and
                 nanomaterials[J]. Nano Letters, 2017, 17(3): 1439-1447.     starch concentration[J]. Food Hydrocolloids, 2019, 95: 476-486.
            [16]  LI  M  C,  MEI  C,  XU  X,  et al.  Cationic  surface  modification  of   [34]  STAR A, STEUERMAN D W, HEATH J R, et al. Starched carbon
                 cellulose  nanocrystals:  Toward  tailoring  dispersion  and  interface  in   nanotubes  [J].  Angewandte  Chemie  International  Edition,  2002,
                 carboxymethyl cellulose films[J]. Polymer, 2016, 107: 200-210.     41(14): 2508-2512.
            [17]  XU H (徐辉), ZHU Y L (朱玉莲), DAI H Q (戴红旗). Advance in   [35]  DE FENOYL L, HIREL D, PEREZ E, et al. Interfacial activity and
                 the  investigations  of  the  preparation  and  application  of  Pickering   emulsifying  behaviour  of  inclusion  complexes  between  helical
                 emulsion[J]. Transactions of China Pulp and Paper (中国造纸学报),   polysaccharides  and  flavouring  molecules  resulting  from  non-
                 2017, 32(4): 16-21.                               covalent  interactions[J].  Food  Research  International,  2018,  105:
            [18]  OCAMPO  A,  ZEA  H.  Formulation  and  evaluation  in  ready  mix   801-811.
                 concrete   of   chemical   additives   based   on   molasses,   [36]  SPYCHAJ T, WILPISZEWSKA K, ZDANOWICZ M. Medium and
                 carboxymethylcellulose  and  polynaphthalenesulphonate[J].  Int  J   high  substituted  carboxymethyl  starch:  Synthesis,  characterization
                 Chem Tech Res, 2014, 6: 768-778.                  and application[J]. Starch-Stärke, 2013, 65(1/2): 22-33.
            [19]  ARANCIBIA  C,  BAYARRI  S,  COSTELL  E.  Comparing   [37]  OLADEBEYE A O, OSHODI A A, AMOO I A, et al. Hydroxypropyl
                 carboxymethyl  cellulose  and  starch  as  thickeners  in  oil/water   derivatives of legume starches: Functional, rheological and thermal
                 emulsions.  Implications  on  rheological  and  structural  properties[J].   properties[J]. Starch-Stärke, 2013, 65(9/10): 762-772.
                 Food Biophysics, 2013, 8(2): 122-136.         [38]  SIAU  C  L,  KARIM  A  A,  NORZIAH  M  H,  et al.  Effects  of
            [20]  VELDERRAIN-RODRIGUEZ  G  R,  SALVIA-TRUJILLO  L,   cationization  on  DSC  thermal  profiles,  pasting  and  emulsifying
                 WALL-MEDRANO  A,  et al.  In vitro  digestibility  and  release  of  a   properties  of  sago  starch[J].  Journal  of  the  Science  of  Food  and
                 mango peel extract encapsulated within water-in-oil-in-water (W1/O/   Agriculture, 2004, 84(13): 1722-1730.
                 W2) emulsions containing sodium carboxymethyl cellulose[J]. Food   [39]  SHARMA M, SINGH A K, YADAV D N, et al. Impact of octenyl
                 & Function, 2019, 10(9): 6110-6120.               succinylation  on  rheological,  pasting,  thermal  and  physicochemical
            [21]  ELLIOT  J  H,  GANZ  A.  Some  rheological  properties  of  sodium   properties  of  pearl  millet  (Pennisetum typhoides)  starch[J].  LWT,
                 carboxymethylcellulose solutions and gels[J]. Rheologica Acta, 1974,   2016, 73: 52-59.
                 13(4/5): 670-674.                             [40]  FU X, ZHANG B, HE X W, et al. Substituent distribution changes
            [22]  ZHANG  L  M.  Cellulosic  associative  thickeners[J].  Carbohydrate   the  pasting  and  emulsion  properties  of  octenylsuccinate  starch[J].
                 Polymers, 2001, 45(1): 1-10.                      Carbohydrate Polymers, 2016, 135: 64-71.
            [23]  LI  Q, YE  L, CAI Y,  et al.  Study  of  rheological  behavior  of   [41]  BELLO-FLORES C A, NUNEZ-SANTIAGO M C, SAN MARTIN-
                 hydrophobically  modified  hydroxyethyl  cellulose[J].  Journal  of   GONZALEZ  M  F,  et al.  Preparation  and  characterization  of
                 Applied Polymer Science, 2006, 100(4): 3346-3352.     octenylsuccinylated  plantain  starch[J].  International  Journal  of
            [24]  HIRANPHINYOPHAT  S,  ASAUMI  Y,  FUJII  S,  et al.  Surface   Biological Macromolecules, 2014, 70: 334-339.
                 grafting polyphosphoesters on cellulose nanocrystals to improve the   [42]  RASHID  U  S,  SIMSEK  S,  KANEL  S  R,  et al.  Modified  tapioca
                 emulsification efficacy[J]. Langmuir, 2019, 35(35): 11443-11451.     starch  for  iron  nanoparticle  dispersion  in  aqueous  media:  Potential
            [25]  NASATTO P L, PIGNON F, SILVEIRA J L, et al. Methylcellulose, a   uses for environmental remediation[J]. SN Applied Sciences, 2019,
                 cellulose  derivative  with  original  physical  properties  and  extended   1(11): 1379.
                 applications[J]. Polymers, 2015, 7(5): 777-803.     [43]  SAARI  H,  WAHLGREN  M,  RAYNER  M,  et al.  A  comparison  of
            [26]  WANG  M  M  (王明明),  XU  X  W  (徐协文), LIU Q C (刘其城).   emulsion  stability  for  different  OSA-modified  waxy  maize
                 Effects of methyl cellulose on the hydration process of carbon fiber   emulsifiers: Granules, dissolved starch, and non-solvent precipitates
                 reinforced concrete[J]. Bulletin of the Chinses Ceramic Society (硅  [J]. PloS One, 2019, 14(2): e0210690.
                 酸盐通报), 2011, 30(3): 524-528.                  [44]  CHEN  X,  HE  X  W,  HUANG  Q.  Effects  of  hydrothermal
            [27]  ZHANG M, YANG B X, LIU W, et al. Influence of hydroxypropyl   pretreatment  on  subsequent  octenylsuccinic  anhydride  (OSA)
                 methylcellulose,  methylcellulose,  gelatin,  poloxamer  407  and   modification  of  cornstarch[J].  Carbohydrate  Polymers,  2014,  101:
                 poloxamer 188 on the formation and stability of soybean oil-in-water   493-498.
                 emulsions[J]. Asian Journal of Pharmaceutical Sciences, 2017, 12(6):   [45]  ZHANG H X, SCHFER C, WU P, et al. Mechanistic understanding
                 521-531.                                          of the relationships between  molecular structure and emulsification
            [28]  BODVIK R, DEDINAITE A, KARLSON L, et al. Aggregation and   properties of octenyl succinic anhydride (OSA) modified starches[J].
                 network   formation   of   aqueous   methylcellulose   and   Food Hydrocolloids, 2018, 74: 168-175.
                 hydroxypropylmethylcellulose solutions[J]. Colloids and Surfaces A:   [46]  SHINYA  S,  FUKAMIZO  T.  Interaction  between  chitosan  and  its
                 Physicochemical  and  Engineering  Aspects,  2010,  354(1/2/3):   related  enzymes:  A  review[J].  International  Journal  of  Biological
                 162-171.                                          Macromolecules, 2017, 104(Part B): 1422-1435.
            [29]  FENG  X  H,  XU  Z  H,  MASLIYAH  J.  Biodegradable  polymer  for   [47]  YEUL  V  S,  RAYALU  S  S.  Unprecedented  chitin  and  chitosan:  A
                 demulsification  of  water-in-bitumen  emulsions[J].  Energy  &  Fuels,   chemical  overview[J].  Journal  of  Polymers  and  the  Environment,
                 2009, 23(1): 451-456.                             2012, 21(2): 606-614.
            [30]  BODVIK  R,  KARLSON  L,  EDWARDS  K,  et al.  Aggregation  of   [48]  KLINKESORN U. The role of chitosan in emulsion formation and
                 modified  celluloses  in  aqueous  solution:  Transition  from   stabilization[J]. Food Reviews International, 2013, 29(4): 371-393.
   39   40   41   42   43   44   45   46   47   48   49