Page 44 - 《精细化工》2020年 第10期
P. 44
·1974· 精细化工 FINE CHEMICALS 第 37 卷
[12] BAI L, HUAN S Q, XIANG W C, et al. Pickering emulsions by methylcellulose to hydroxypropylmethylcellulose solution properties
combining cellulose nanofibrils and nanocrystals: Phase behavior and induced by a low-molecular-weight oxyethylene additive[J].
depletion stabilization[J]. Green Chemistry, 2018, 20(7): 1571-1582. Langmuir, 2012, 28(38): 13562-13569.
[13] LI Z, BAI B J, XU D R, et al. Synergistic collaboration between [31] HUANG X J, LI Q J, LIU H, et al. Oil-in-water emulsions stabilized
regenerated cellulose and surfactant to stabilize oil/water (O/W) by saponified epoxidized soybean oil-grafted hydroxyethyl
emulsions for enhancing oil recovery[J]. Energy & Fuels, 2018, cellulose[J]. Journal of Agricultural and Food Chemistry, 2017,
33(1): 81-88. 65(17): 3497- 3504.
[14] TRIGUEIRO J P, SILVA G G, PEREIRA F V, et al. Layer-by-layer [32] MAHMOOD K, KAMILAH H, SHANG P L, et al. A review:
assembled films of multi-walled carbon nanotubes with chitosan and Interaction of starch/non-starch hydrocolloid blending and the recent
cellulose nanocrystals[J]. Journal of Colloid and Interface Science, food applications[J]. Food Bioscience, 2017, 19: 110-120.
2014, 432: 214-220. [33] YULIANINGSIH R, GOHTANI S. Dispersion characteristics of
[15] HAJIAN A, LINDSTROM S B, PETTERSSON T, et al. pregelatinized waxy rice starch and its performance as an emulsifier
Understanding the dispersive action of nanocellulose for carbon for oil-in-water emulsions: Effect of gelatinization temperature and
nanomaterials[J]. Nano Letters, 2017, 17(3): 1439-1447. starch concentration[J]. Food Hydrocolloids, 2019, 95: 476-486.
[16] LI M C, MEI C, XU X, et al. Cationic surface modification of [34] STAR A, STEUERMAN D W, HEATH J R, et al. Starched carbon
cellulose nanocrystals: Toward tailoring dispersion and interface in nanotubes [J]. Angewandte Chemie International Edition, 2002,
carboxymethyl cellulose films[J]. Polymer, 2016, 107: 200-210. 41(14): 2508-2512.
[17] XU H (徐辉), ZHU Y L (朱玉莲), DAI H Q (戴红旗). Advance in [35] DE FENOYL L, HIREL D, PEREZ E, et al. Interfacial activity and
the investigations of the preparation and application of Pickering emulsifying behaviour of inclusion complexes between helical
emulsion[J]. Transactions of China Pulp and Paper (中国造纸学报), polysaccharides and flavouring molecules resulting from non-
2017, 32(4): 16-21. covalent interactions[J]. Food Research International, 2018, 105:
[18] OCAMPO A, ZEA H. Formulation and evaluation in ready mix 801-811.
concrete of chemical additives based on molasses, [36] SPYCHAJ T, WILPISZEWSKA K, ZDANOWICZ M. Medium and
carboxymethylcellulose and polynaphthalenesulphonate[J]. Int J high substituted carboxymethyl starch: Synthesis, characterization
Chem Tech Res, 2014, 6: 768-778. and application[J]. Starch-Stärke, 2013, 65(1/2): 22-33.
[19] ARANCIBIA C, BAYARRI S, COSTELL E. Comparing [37] OLADEBEYE A O, OSHODI A A, AMOO I A, et al. Hydroxypropyl
carboxymethyl cellulose and starch as thickeners in oil/water derivatives of legume starches: Functional, rheological and thermal
emulsions. Implications on rheological and structural properties[J]. properties[J]. Starch-Stärke, 2013, 65(9/10): 762-772.
Food Biophysics, 2013, 8(2): 122-136. [38] SIAU C L, KARIM A A, NORZIAH M H, et al. Effects of
[20] VELDERRAIN-RODRIGUEZ G R, SALVIA-TRUJILLO L, cationization on DSC thermal profiles, pasting and emulsifying
WALL-MEDRANO A, et al. In vitro digestibility and release of a properties of sago starch[J]. Journal of the Science of Food and
mango peel extract encapsulated within water-in-oil-in-water (W1/O/ Agriculture, 2004, 84(13): 1722-1730.
W2) emulsions containing sodium carboxymethyl cellulose[J]. Food [39] SHARMA M, SINGH A K, YADAV D N, et al. Impact of octenyl
& Function, 2019, 10(9): 6110-6120. succinylation on rheological, pasting, thermal and physicochemical
[21] ELLIOT J H, GANZ A. Some rheological properties of sodium properties of pearl millet (Pennisetum typhoides) starch[J]. LWT,
carboxymethylcellulose solutions and gels[J]. Rheologica Acta, 1974, 2016, 73: 52-59.
13(4/5): 670-674. [40] FU X, ZHANG B, HE X W, et al. Substituent distribution changes
[22] ZHANG L M. Cellulosic associative thickeners[J]. Carbohydrate the pasting and emulsion properties of octenylsuccinate starch[J].
Polymers, 2001, 45(1): 1-10. Carbohydrate Polymers, 2016, 135: 64-71.
[23] LI Q, YE L, CAI Y, et al. Study of rheological behavior of [41] BELLO-FLORES C A, NUNEZ-SANTIAGO M C, SAN MARTIN-
hydrophobically modified hydroxyethyl cellulose[J]. Journal of GONZALEZ M F, et al. Preparation and characterization of
Applied Polymer Science, 2006, 100(4): 3346-3352. octenylsuccinylated plantain starch[J]. International Journal of
[24] HIRANPHINYOPHAT S, ASAUMI Y, FUJII S, et al. Surface Biological Macromolecules, 2014, 70: 334-339.
grafting polyphosphoesters on cellulose nanocrystals to improve the [42] RASHID U S, SIMSEK S, KANEL S R, et al. Modified tapioca
emulsification efficacy[J]. Langmuir, 2019, 35(35): 11443-11451. starch for iron nanoparticle dispersion in aqueous media: Potential
[25] NASATTO P L, PIGNON F, SILVEIRA J L, et al. Methylcellulose, a uses for environmental remediation[J]. SN Applied Sciences, 2019,
cellulose derivative with original physical properties and extended 1(11): 1379.
applications[J]. Polymers, 2015, 7(5): 777-803. [43] SAARI H, WAHLGREN M, RAYNER M, et al. A comparison of
[26] WANG M M (王明明), XU X W (徐协文), LIU Q C (刘其城). emulsion stability for different OSA-modified waxy maize
Effects of methyl cellulose on the hydration process of carbon fiber emulsifiers: Granules, dissolved starch, and non-solvent precipitates
reinforced concrete[J]. Bulletin of the Chinses Ceramic Society (硅 [J]. PloS One, 2019, 14(2): e0210690.
酸盐通报), 2011, 30(3): 524-528. [44] CHEN X, HE X W, HUANG Q. Effects of hydrothermal
[27] ZHANG M, YANG B X, LIU W, et al. Influence of hydroxypropyl pretreatment on subsequent octenylsuccinic anhydride (OSA)
methylcellulose, methylcellulose, gelatin, poloxamer 407 and modification of cornstarch[J]. Carbohydrate Polymers, 2014, 101:
poloxamer 188 on the formation and stability of soybean oil-in-water 493-498.
emulsions[J]. Asian Journal of Pharmaceutical Sciences, 2017, 12(6): [45] ZHANG H X, SCHFER C, WU P, et al. Mechanistic understanding
521-531. of the relationships between molecular structure and emulsification
[28] BODVIK R, DEDINAITE A, KARLSON L, et al. Aggregation and properties of octenyl succinic anhydride (OSA) modified starches[J].
network formation of aqueous methylcellulose and Food Hydrocolloids, 2018, 74: 168-175.
hydroxypropylmethylcellulose solutions[J]. Colloids and Surfaces A: [46] SHINYA S, FUKAMIZO T. Interaction between chitosan and its
Physicochemical and Engineering Aspects, 2010, 354(1/2/3): related enzymes: A review[J]. International Journal of Biological
162-171. Macromolecules, 2017, 104(Part B): 1422-1435.
[29] FENG X H, XU Z H, MASLIYAH J. Biodegradable polymer for [47] YEUL V S, RAYALU S S. Unprecedented chitin and chitosan: A
demulsification of water-in-bitumen emulsions[J]. Energy & Fuels, chemical overview[J]. Journal of Polymers and the Environment,
2009, 23(1): 451-456. 2012, 21(2): 606-614.
[30] BODVIK R, KARLSON L, EDWARDS K, et al. Aggregation of [48] KLINKESORN U. The role of chitosan in emulsion formation and
modified celluloses in aqueous solution: Transition from stabilization[J]. Food Reviews International, 2013, 29(4): 371-393.