Page 46 - 《精细化工》2020年 第10期
P. 46

·1976·                            精细化工   FINE CHEMICALS                                 第 37 卷

                 pharmacological  properties  of  gum  arabic[M].  Cham:  Springer   (gum arabic)[J]. Food Hydrocolloids, 2017, 65: 10-16.
                 International Publishing, 2018.               [97]  SHARMA  G,  SHARMA  S,  KUMAR  A,  et al.  Guar  gum  and  its
            [89]  CASTELLANI O, GUIBERT D, AL-ASSAF S, et al. Hydrocolloids   composites  as  potential  materials  for  diverse  applications:  A
                 with  emulsifying  capacity.  Part  1-Emulsifying  properties  and   review[J]. Carbohydrate Polymers, 2018, 199: 534-545.
                 interfacial characteristics of conventional [Acacia senegal (L.) Willd.   [98]  PARIJA  S,  MISRA  M,  MOHANTY  A  K.  Studies  of  natural  gum
                 var.  senegal]  and  matured  [Acacia  (sen)  SUPER  GUM™]  Acacia   adhesive  extracts:  An  overview[J].  Journal  of  Macromolecular
                 senegal[J]. Food Hydrocolloids, 2010, 24(2/3): 193-199.     Science: Part C, 2001, 41(3): 175-197.
            [90]  RAY A K, BIRD P B, IACOBUCCI G A, et al. Functionality of gum   [99]  SINGH  S,  SINGH  G,  ARYA  S  K.  Mannans:  An  overview  of
                 arabic.  Fractionation,  characterization  and  evaluation  of  gum   properties and application in food products[J]. International Journal
                 fractions  in  citrus  oil  emulsions  and  model  beverages[J].  Food   of Biological Macromolecules, 2018, 119: 79-95.
                 Hydrocolloids, 1995, 9(2): 123-131.           [100]  GONG  H  H,  LIU  M  Z,  CHEN  J  C,  et al.  Synthesis  and
            [91]  ATGIE M, CHENNEVIERE A, MASBERNAT O, et al. Emulsions   characterization  of  carboxymethyl  guar  gum  and  rheological
                 stabilized by gum arabic: How diversity and interfacial networking   properties  of  its  solutions[J].  Carbohydrate  Polymers,  2012,  88(3):
                 lead to metastability[J]. Langmuir, 2019, 35(45): 14553-14565.     1015-1022.
            [92]  MCCLEMENTS  D  J,  GUMUS  C  E.  Natural  emulsifiers-   [101]  VYŠVAŘIL M, HEGROV M, ŽIŽLAVSK T. Rheological properties
                 biosurfactants,  phospholipids,  biopolymers,  and  colloidal  particles:   of  lime  mortars  with  guar  gum  derivatives[J].  Key  Engineering
                 Molecular  and physicochemical  basis of  functional performance[J].   Materials, 2018, 760: 257-265.
                 Advances in Colloid and Interface Science, 2016, 234: 3-26.     [102]  GOVIN A, BARTHOLIN M C, BIASOTTI B, et al. Modification of
            [93]  XIANG S P, YAO X L, ZHANG W Q, et al. Gum arabic-stabilized   water retention and rheological properties of fresh state cement-based
                 conjugated linoleic acid emulsions: Emulsion properties in relation to   mortars  by  guar  gum  derivatives[J].  Construction  and  Building
                 interfacial  adsorption  behaviors[J].  Food  Hydrocolloids,  2015,  48:   Materials, 2016, 122: 772-780.
                 110-116.                                      [103]  ZHANG  F  S,  SHEN  Y  D,  REN  T,  et al.  Synthesis  of  2-alkenyl-
            [94]  NURDIN I, ZULKIFLI, SATRIANANDA, et al. The study of gum   3-butoxypropyl  guar  gum  with  enhanced  rheological  properties[J].
                 arabic  as  surfactant  on  the  stability  of  water-based  alumina   International  Journal  of  Biological  Macromolecules,  2017,  97:
                 nanoparticle  suspensions[J].  IOP  Conference  Series:  Materials   317-322.
                 Science and Engineering, 2019, 536: 012086.     [104]  LI Y P, LIU Y C, TANG H B, et al. Oxidized cross-linked guar gum
            [95]  KUMAR  P  G,  KUMARESAN  V,  VELRAJ  R.  Stability,  viscosity,   with  hydrophobic  groups:  Structure,  properties  and  removal  of
                 thermal  conductivity,  and  electrical  conductivity  enhancement  of   reactive blue-XBR in simulated water[J]. Arabian Journal for Science
                 multi-walled  carbon  nanotube  nanofluid  using  gum  arabic[J].   and Engineering, 2018, 43(7): 3621-3629.
                 Fullerenes,  Nanotubes  and  Carbon  Nanostructures,  2017,  25(4):   [105]  SONI N, SHAH N N, SINGHAL R S. Dodecenyl succinylated guar
                 230-240.                                          gum  hydrolysate  as  a  wall  material  for  microencapsulation:
            [96]  SHI  Y,  LI  C,  ZHANG  L,  et al.  Characterization  and  emulsifying   Synthesis,  characterization  and  evaluation[J].  Journal  of  Food
                 properties of octenyl succinate anhydride modified Acacia seyal gum   Engineering, 2019, 242: 133-140.


            (上接第 1956 页)                                           metal pyrites (FeS 2, CoS 2, NiS 2, and their alloys) for highly efficient
                                                                   hydrogen evolution and polysulfide reduction electrocatalysis[J]. The
            [66]  YAN X D, TIAN L H, HE M, et al. Three-dimensional crystalline/   Journal of Physical Chemistry C, 2014, 118(37): 21347-21356.
                 amorphous Co/Co 3O 4 core/shell nanosheets as efficient electrocatalysts   [74]  KONG  D,  CHA  J  J,  WANG  H,  et al.  First-row  transition  metal
                 for  the  hydrogen  evolution  reaction[J].  Nano  Letters,  2015,  15(9):
                                                                   dichalcogenide catalysts for hydrogen evolution reaction[J]. Energy &
                 6015-6021.                                        Environmental Science, 2013, 6(12): 3553-3558.
            [67]  FENG J X, XU H, DONG Y T, et al. Efficient hydrogen evolution   [75]  ZHOU W, WU X J, CAO X, et al. Ni 3S 2 nanorods/Ni foam composite
                 electrocatalysis  using  cobalt  nanotubes  decorated  with  titanium   electrode with low overpotential for electrocatalytic oxygen evolution[J].
                 dioxide  nanodots[J].  Angewandte  Chemie  International  Edition,   Energy & Environmental Science, 2013, 6(10): 2921-2924.
                 2017, 56(11): 2960-2964.
                                                               [76]  WANG P T, ZHANG X, ZHANG J, et al. Precise tuning in platinum-
            [68]  REN B W, LI D Q, JIN Q Y, et al. Integrated 3D self-supported Ni
                 decorated  MoO 2  nanowires  as  highly  efficient  electrocatalysts  for   nickel/nickel  sulfide  interface  nanowires  for  synergistic  hydrogen
                 ultra-highly  stable  and  large-current-density  hydrogen  evolution[J].   evolution catalysis[J]. Nature Communications, 2017, 8(1): 1-9.
                 Journal of Materials Chemistry A, 2017, 5(46): 24453-24461.   [77]  ZHANG  J,  WANG  T,  POHL  D,  et al.  Interface  engineering  of
            [69]  SHI Y M, ZHANG B. Recent advances in transition metal phosphide   MoS 2/Ni 3S 2  heterostructures  for  highly  enhanced  electrochemical
                                                                   overall-water-splitting activity[J]. Angewandte Chemie International
                 nanomaterials:  Synthesis  and  applications  in  hydrogen  evolution
                 reaction[J]. Chemical Society Reviews, 2016, 45(6): 1529-1541.   Edition, 2016, 55(23): 6702-6707.
            [70]  ZHANG T, YANG K N, WANG C, et al. Nanometric Ni 5P 4 clusters   [78]  KUANG P Y, TONG T, FAN K, et al. In situ fabrication of Ni-Mo
                 nested on NiCo 2O 4 for efficient hydrogen production via alkaline water   bimetal  sulfide  hybrid  as  an  efficient  electrocatalyst  for  hydrogen
                 electrolysis[J].  Advanced  Energy  Materials,  2018,  8(29):  1801690-   evolution  over  a  wide  pH  range[J].  ACS  Catalysis,  2017,  7(9):
                 1801695.                                          6179-6187.
            [71]  GIOVANNI C D, WANG W A, NOWAK S, et al. Bioinspired iron   [79]  HU J, ZHANG C X, YANG P, et al. Kineticoriented construction of
                 sulfide  nanoparticles  for  cheap  and  long-lived  electrocatalytic   MoS 2 synergistic interface to boost pH-universal hydrogen evolution[J].
                 molecular  hydrogen  evolution  in  neutral  water[J].  ACS  Catalysis,   Advanced Functional Materials, 2020, 30(6): 1908520-1908528.
                 2014, 4(2): 681-687.                          [80]  FANG Y, HAI Q Z, YU F H, et al. High-performance bifunctional
            [72]  FABER  M  S,  DZIEDZIC  R,  LUKOWSKI  M  A,  et al.   porous  non-noble  metal  phosphide  catalyst  for  overall  water
                 High-performance  electrocatalysis  using  metallic  cobalt  pyrite   splitting[J]. Nature Communications, 2018, 9(1): 2551-2559.
                 (CoS 2)  micro-  and  nanostructures[J].  Journal  of  the  American   [81]  SONG F Z, LI W, YANG J Q, et al. Interfacing nickel nitride and
                 Chemical Society, 2014, 136(28): 10053-10061.     nickel boosts both electrocatalytic hydrogen evolution and oxidation
            [73]  FABER  M  S,  LUKOWSKI  M  A,  DING  Q,  et al.  Earth-abundant   reactions[J]. Nature Communications, 2018, 9(1): 4531-4539.
   41   42   43   44   45   46   47   48   49   50   51