Page 46 - 《精细化工》2020年 第10期
P. 46
·1976· 精细化工 FINE CHEMICALS 第 37 卷
pharmacological properties of gum arabic[M]. Cham: Springer (gum arabic)[J]. Food Hydrocolloids, 2017, 65: 10-16.
International Publishing, 2018. [97] SHARMA G, SHARMA S, KUMAR A, et al. Guar gum and its
[89] CASTELLANI O, GUIBERT D, AL-ASSAF S, et al. Hydrocolloids composites as potential materials for diverse applications: A
with emulsifying capacity. Part 1-Emulsifying properties and review[J]. Carbohydrate Polymers, 2018, 199: 534-545.
interfacial characteristics of conventional [Acacia senegal (L.) Willd. [98] PARIJA S, MISRA M, MOHANTY A K. Studies of natural gum
var. senegal] and matured [Acacia (sen) SUPER GUM™] Acacia adhesive extracts: An overview[J]. Journal of Macromolecular
senegal[J]. Food Hydrocolloids, 2010, 24(2/3): 193-199. Science: Part C, 2001, 41(3): 175-197.
[90] RAY A K, BIRD P B, IACOBUCCI G A, et al. Functionality of gum [99] SINGH S, SINGH G, ARYA S K. Mannans: An overview of
arabic. Fractionation, characterization and evaluation of gum properties and application in food products[J]. International Journal
fractions in citrus oil emulsions and model beverages[J]. Food of Biological Macromolecules, 2018, 119: 79-95.
Hydrocolloids, 1995, 9(2): 123-131. [100] GONG H H, LIU M Z, CHEN J C, et al. Synthesis and
[91] ATGIE M, CHENNEVIERE A, MASBERNAT O, et al. Emulsions characterization of carboxymethyl guar gum and rheological
stabilized by gum arabic: How diversity and interfacial networking properties of its solutions[J]. Carbohydrate Polymers, 2012, 88(3):
lead to metastability[J]. Langmuir, 2019, 35(45): 14553-14565. 1015-1022.
[92] MCCLEMENTS D J, GUMUS C E. Natural emulsifiers- [101] VYŠVAŘIL M, HEGROV M, ŽIŽLAVSK T. Rheological properties
biosurfactants, phospholipids, biopolymers, and colloidal particles: of lime mortars with guar gum derivatives[J]. Key Engineering
Molecular and physicochemical basis of functional performance[J]. Materials, 2018, 760: 257-265.
Advances in Colloid and Interface Science, 2016, 234: 3-26. [102] GOVIN A, BARTHOLIN M C, BIASOTTI B, et al. Modification of
[93] XIANG S P, YAO X L, ZHANG W Q, et al. Gum arabic-stabilized water retention and rheological properties of fresh state cement-based
conjugated linoleic acid emulsions: Emulsion properties in relation to mortars by guar gum derivatives[J]. Construction and Building
interfacial adsorption behaviors[J]. Food Hydrocolloids, 2015, 48: Materials, 2016, 122: 772-780.
110-116. [103] ZHANG F S, SHEN Y D, REN T, et al. Synthesis of 2-alkenyl-
[94] NURDIN I, ZULKIFLI, SATRIANANDA, et al. The study of gum 3-butoxypropyl guar gum with enhanced rheological properties[J].
arabic as surfactant on the stability of water-based alumina International Journal of Biological Macromolecules, 2017, 97:
nanoparticle suspensions[J]. IOP Conference Series: Materials 317-322.
Science and Engineering, 2019, 536: 012086. [104] LI Y P, LIU Y C, TANG H B, et al. Oxidized cross-linked guar gum
[95] KUMAR P G, KUMARESAN V, VELRAJ R. Stability, viscosity, with hydrophobic groups: Structure, properties and removal of
thermal conductivity, and electrical conductivity enhancement of reactive blue-XBR in simulated water[J]. Arabian Journal for Science
multi-walled carbon nanotube nanofluid using gum arabic[J]. and Engineering, 2018, 43(7): 3621-3629.
Fullerenes, Nanotubes and Carbon Nanostructures, 2017, 25(4): [105] SONI N, SHAH N N, SINGHAL R S. Dodecenyl succinylated guar
230-240. gum hydrolysate as a wall material for microencapsulation:
[96] SHI Y, LI C, ZHANG L, et al. Characterization and emulsifying Synthesis, characterization and evaluation[J]. Journal of Food
properties of octenyl succinate anhydride modified Acacia seyal gum Engineering, 2019, 242: 133-140.
(上接第 1956 页) metal pyrites (FeS 2, CoS 2, NiS 2, and their alloys) for highly efficient
hydrogen evolution and polysulfide reduction electrocatalysis[J]. The
[66] YAN X D, TIAN L H, HE M, et al. Three-dimensional crystalline/ Journal of Physical Chemistry C, 2014, 118(37): 21347-21356.
amorphous Co/Co 3O 4 core/shell nanosheets as efficient electrocatalysts [74] KONG D, CHA J J, WANG H, et al. First-row transition metal
for the hydrogen evolution reaction[J]. Nano Letters, 2015, 15(9):
dichalcogenide catalysts for hydrogen evolution reaction[J]. Energy &
6015-6021. Environmental Science, 2013, 6(12): 3553-3558.
[67] FENG J X, XU H, DONG Y T, et al. Efficient hydrogen evolution [75] ZHOU W, WU X J, CAO X, et al. Ni 3S 2 nanorods/Ni foam composite
electrocatalysis using cobalt nanotubes decorated with titanium electrode with low overpotential for electrocatalytic oxygen evolution[J].
dioxide nanodots[J]. Angewandte Chemie International Edition, Energy & Environmental Science, 2013, 6(10): 2921-2924.
2017, 56(11): 2960-2964.
[76] WANG P T, ZHANG X, ZHANG J, et al. Precise tuning in platinum-
[68] REN B W, LI D Q, JIN Q Y, et al. Integrated 3D self-supported Ni
decorated MoO 2 nanowires as highly efficient electrocatalysts for nickel/nickel sulfide interface nanowires for synergistic hydrogen
ultra-highly stable and large-current-density hydrogen evolution[J]. evolution catalysis[J]. Nature Communications, 2017, 8(1): 1-9.
Journal of Materials Chemistry A, 2017, 5(46): 24453-24461. [77] ZHANG J, WANG T, POHL D, et al. Interface engineering of
[69] SHI Y M, ZHANG B. Recent advances in transition metal phosphide MoS 2/Ni 3S 2 heterostructures for highly enhanced electrochemical
overall-water-splitting activity[J]. Angewandte Chemie International
nanomaterials: Synthesis and applications in hydrogen evolution
reaction[J]. Chemical Society Reviews, 2016, 45(6): 1529-1541. Edition, 2016, 55(23): 6702-6707.
[70] ZHANG T, YANG K N, WANG C, et al. Nanometric Ni 5P 4 clusters [78] KUANG P Y, TONG T, FAN K, et al. In situ fabrication of Ni-Mo
nested on NiCo 2O 4 for efficient hydrogen production via alkaline water bimetal sulfide hybrid as an efficient electrocatalyst for hydrogen
electrolysis[J]. Advanced Energy Materials, 2018, 8(29): 1801690- evolution over a wide pH range[J]. ACS Catalysis, 2017, 7(9):
1801695. 6179-6187.
[71] GIOVANNI C D, WANG W A, NOWAK S, et al. Bioinspired iron [79] HU J, ZHANG C X, YANG P, et al. Kineticoriented construction of
sulfide nanoparticles for cheap and long-lived electrocatalytic MoS 2 synergistic interface to boost pH-universal hydrogen evolution[J].
molecular hydrogen evolution in neutral water[J]. ACS Catalysis, Advanced Functional Materials, 2020, 30(6): 1908520-1908528.
2014, 4(2): 681-687. [80] FANG Y, HAI Q Z, YU F H, et al. High-performance bifunctional
[72] FABER M S, DZIEDZIC R, LUKOWSKI M A, et al. porous non-noble metal phosphide catalyst for overall water
High-performance electrocatalysis using metallic cobalt pyrite splitting[J]. Nature Communications, 2018, 9(1): 2551-2559.
(CoS 2) micro- and nanostructures[J]. Journal of the American [81] SONG F Z, LI W, YANG J Q, et al. Interfacing nickel nitride and
Chemical Society, 2014, 136(28): 10053-10061. nickel boosts both electrocatalytic hydrogen evolution and oxidation
[73] FABER M S, LUKOWSKI M A, DING Q, et al. Earth-abundant reactions[J]. Nature Communications, 2018, 9(1): 4531-4539.