Page 46 - 《精细化工》2020年第11期
P. 46

·2192·                            精细化工   FINE CHEMICALS                                 第 37 卷

            相变材料,赋予其可纺性、阻燃性、防水防蛀、导                             [18]  LATIBARI  S  T,  MEHRALI  M,  MEHRALI  M,  et al.  Synthesis,
                                                                   characterization  and  thermal  properties  of  nanoencapsulated  phase
            热增强型及形状记忆等功能。                                          change materials via sol-gel method[J]. Energy, 2013, 61: 664-672.
                (4)深入开展聚氨酯定形相变材料应用技术的                          [19]  MENG X, QIN S, FAN H B, et al. Long alkyl chain-grafted carbon
                                                                   nanotube-decorated binary-core phase-change microcapsules for heat
            开发,拓展其应用领域,获得相应产品,促进应用                                 energy  storage:  Synthesis  and  thermal  properties[J].  Solar  Energy
            进展。                                                    Materials and Solar Cells, 2020, 212: 110589.
                                                               [20]  YANG D, SHI S L, XIONG L, et al. Paraffin/palygorskite composite
            参考文献:                                                  phase change materials for thermal energy storage[J]. Solar Energy
                                                                   Materials and Solar Cells, 2016, 144: 228-234.
            [1]   CUNHA S R L D, DE-AGUIAR J L B. Phase change materials and   [21]  LEE J, WI S, YUN B Y, et al. Thermal and characteristic analysis of
                 energy efficiency of buildings: A review of knowledge[J]. Journal of   shape-stabilization  phase  change  materials  by  advanced  vacuum
                 Energy Storage, 2020, 27: 101083.                 impregnation  method  using  carbon-based  materials[J].  Journal  of
            [2]   KOOHI-FAYEGH  S,  ROSEN  M  A.  A  review  of  energy  storage   Industrial and Engineering Chemistry, 2019, 70: 281-289.
                 types,  applications  and  recent  developments[J].  Journal  of  Energy   [22]  QIAN T M, DANG B K, CHEN Y P, et al. Fabrication of magnetic
                 Storage, 2020, 27: 101047.                        phase change n-eicosane@Fe 3O 4/SiO 2 microcapsules on wood surface
            [3]   CHEN J L (陈久林),  DUAN  Y  (段洋),  WANG  Z  X  (王志雄).   via sol-gel method[J]. Journal of Alloys and Compounds, 2019, 772:
                 Research and application of phase change heat storage technilogy[J].   871-876.
                 Guangdong Chemical Industry (广东化工), 2020, 47(2): 101-104.   [23]  LU S F, SHEN T W, XING J W, et al. Preparation and characterization
            [4]   MAGENDRAN  S  S,  KHAN  F  S  A,  MUBARAK  N  M,  et al.   of  cross-linked  polyurethane  shell  microencapsulated  phase  change
                 Synthesis of organic phase change materials (PCM) for energy storage   materials  by  interfacial  polymerization[J].  Materials  Letters,  2018,
                 applications:  A  review[J].  Nano-Structures  &  Nano-Objects,  2019,   211: 36-39.
                 20: 100399.                                   [24]  YANG  Y  N, XIA  R Q,  ZHAO J Q,  et al. Preparation and thermal
            [5]   ZHANG N, YUAN Y P, CAO X L, et al. Latent heat thermal energy   properties of microencapsulated polyurethane and double-component
                 storage systems with solid-liquid phase change materials: A review[J].   poly(ethylene  glycol)  as  phase  change  material  for  thermal  energy
                 Advanced Engineering Materials, 2018, 20(6): 1700753.   storage  by  interfacial  polymerization[J].  Energy  &  Fuels,  2020,
            [6]   ZHAO Y J, MIN X, HUANG Z H, et al. Honeycomb-like structured   34(1): 1024-1032.
                 biological  porous  carbon  encapsulating  PEG:  A  shape-stable  phase   [25]  WANG L J (王灵娟). Study on polyurethane based form-stable phase
                 change  material  with  enhanced  thermal  conductivity  for  thermal   change  composite  with  high  energy  density[D].  Dalian:  Dalian
                 energy storage[J]. Energy and Buildings, 2018, 158: 1049-1062.   University of Technology (大连理工大学), 2016.
            [7]   MENG  Q  H,  HU  J  L.  A  poly(ethylene  glycol)-based  smart  phase   [26]  LU  X,  HUANG  J  T,  WONG  W  Y,  et al.  A  novel  bio-based
                 change  material[J].  Solar  Energy  Materials  and  Solar  Cells,  2008,   polyurethane/wood powder composite as shape-stable phase change
                 92(10): 1260-1268.                                material  with  high  relative  enthalpy  efficiency  for  solar  thermal
            [8]   ALKAN  C,  GÜNTHER  E,  HIEBLER  S, et  al.  Polyurethanes  as   energy storage[J]. Solar Energy Materials and Solar Cells, 2019, 200:
                 solid-solid  phase  change  materials  for  thermal  energy  storage[J].   109987.
                 Solar Energy, 2012, 86(6): 1761-1769.         [27]  MORAD G, NASSIRI P, ERSHAD-LANGROUDI A, et al. Acoustical,
            [9]   CHEN K, LIU R W, ZOU C, et al. Linear polyurethane ionomers as   damping  and  thermal  properties  of  polyurethane/poly(methyl
                 solid-solid phase change materials for thermal energy storage[J]. Solar   methacrylate)-based  semi-interpenetrating  polymer  network  foams[J].
                 Energy Materials and Solar Cells, 2014, 130: 466-473.   Plastics, Rubber and Composites, 2018, 47(5): 221-231.
            [10]  SU J C (粟劲苍), LIU P S (刘朋生). Effet of hard and segments on   [28]  LIU Z M, ZHANG Y Y, HU K, et al. Preparation and properties of
                 the heat storage properties of polyurethane glycol-based polyurethanes[J].   polyethylene glycol based semi-interpenetrating polymer network as
                 Acta Polymerica Sinica (高分子学报), 2007, 38(2): 97-102.   novel  form-stable  phase  change  materials  for  thermal  energy
            [11]  CAO  Q  (曹琪), LIU P S (刘朋生).  Transition  characteristics  and   storage[J]. Energy and Buildings, 2016, 127: 327-336.
                 morphology of cross linking polyurethane solid-solid phase change   [29]  KUMAR  H,  SIDDARAMAIAH  R,  SOMASHEKAR  R,  et al.
                 material[J]. Chinese Journal of Applied Chemistry (应用化学), 2007,   Structure-property relationship of polyethylene glycol-based PU/PAN
                 24(6): 652-655.                                   semi-interpenetrating polymer networks[J]. Journal of Applied Polymer
            [12]  LU  X,  FANG  C,  SHENG  X  X,  et al.  One-step  and  solvent-free   Science, 2006, 99(1): 177-187.
                 synthesis  of  polyethylene  glycol-based  polyurethane  as  solid-solid   [30]  ZHANG Y A, XIU J H, TANG B T, et al. Novel semi-interpenetrating
                 phase change materials for solar thermal energy storage[J]. Industrial   network structural phase change composites with high phase change
                 & Engineering Chemistry Research, 2019, 58(8): 3024-3032.   enthalpy[J]. AIChE Journal, 2018, 64(2): 688-696.
            [13]  ZHOU Y, LIU X D, SHENG D K, et al. Polyurethane-based solid-   [31]  IBRAHIM  N  I,  AL-SULAIMAN  F  A,  RAHMAN  S, et  al.  Heat
                 solid phase change materials with in situ reduced graphene oxide for   transfer enhancement of phase change materials for thermal energy
                 light-thermal energy conversion and storage[J]. Chemical Engineering   storage applications: A critical review[J]. Renewable and Sustainable
                 Journal, 2018, 338: 117-125.                      Energy Reviews, 2017, 74: 26-50.
            [14]  LIU  Z  M,  FU  X  W,  JIANG  L,  et al.  Solvent-free  synthesis  and   [32]  WU S F, YAN T, KUAI Z H, et al. Thermal conductivity enhancement
                 properties  of  novel  solid-solid  phase  change  materials  with   on phase change materials for thermal energy storage: A review[J].
                 biodegradable castor oil for thermal energy storage[J]. Solar Energy   Energy Storage Materials, 2020, 25: 251-295.
                 Materials and Solar Cells, 2016, 147: 177-184.   [33]  LI  W  H,  LAI-ISKANDAR  S,  TAN  D, et al.  Thermal  conductivity
            [15]  HARLÉ  T,  NGUYEN  G  T  M,  LEDESERT  B,  et al.  Cross-linked   enhancement and shape stabilization of phase-change materials using
                 polyurethane as solid-solid phase change material for low temperature   three-dimensional graphene and graphene powder[J]. Energy & Fuels,
                 thermal energy storage[J]. Thermochimica Acta, 2020, 685: 178191.   2020, 34(2): 2435-2444.
            [16]  CHENG L L (程璐璐), YANG J S (杨建森), CAO X  Y (曹向阳),     [34]  AL-SHANNAQ R, KURDI J, AL-MUHTASEB S, et al. Innovative
                 et al. Research on thermal properties of microcapsule phase change   method of metal coating of microcapsules containing phase change
                 materials  prepared  by  in-situ  polymerization[J].  New  Building   materials[J]. Solar Energy, 2016, 129: 54-64.
                 Materials (新型建筑材料), 2019, 46(7): 89-93.       [35]  KARTHIK M, FAIK A, BLANCO-RODRÍGUEZ P, et al. Preparation
            [17]  FENG  L  L,  ZHENG  J,  YANG  H  Z,  et al.  Preparation  and   of  erythritol-graphite  foam  phase  change  composite  with  enhanced
                 characterization of polyethylene glycol/active carbon composites as   thermal  conductivity  for  thermal  energy  storage  applications[J].
                 shape-stabilized  phase  change  materials[J].  Solar  Energy  Materials   Carbon, 2015, 94: 266-276.
                 and Solar Cells, 2011, 95(2): 644-650.                                      (下转第 2215 页)
   41   42   43   44   45   46   47   48   49   50   51