Page 46 - 《精细化工》2020年第11期
P. 46
·2192· 精细化工 FINE CHEMICALS 第 37 卷
相变材料,赋予其可纺性、阻燃性、防水防蛀、导 [18] LATIBARI S T, MEHRALI M, MEHRALI M, et al. Synthesis,
characterization and thermal properties of nanoencapsulated phase
热增强型及形状记忆等功能。 change materials via sol-gel method[J]. Energy, 2013, 61: 664-672.
(4)深入开展聚氨酯定形相变材料应用技术的 [19] MENG X, QIN S, FAN H B, et al. Long alkyl chain-grafted carbon
nanotube-decorated binary-core phase-change microcapsules for heat
开发,拓展其应用领域,获得相应产品,促进应用 energy storage: Synthesis and thermal properties[J]. Solar Energy
进展。 Materials and Solar Cells, 2020, 212: 110589.
[20] YANG D, SHI S L, XIONG L, et al. Paraffin/palygorskite composite
参考文献: phase change materials for thermal energy storage[J]. Solar Energy
Materials and Solar Cells, 2016, 144: 228-234.
[1] CUNHA S R L D, DE-AGUIAR J L B. Phase change materials and [21] LEE J, WI S, YUN B Y, et al. Thermal and characteristic analysis of
energy efficiency of buildings: A review of knowledge[J]. Journal of shape-stabilization phase change materials by advanced vacuum
Energy Storage, 2020, 27: 101083. impregnation method using carbon-based materials[J]. Journal of
[2] KOOHI-FAYEGH S, ROSEN M A. A review of energy storage Industrial and Engineering Chemistry, 2019, 70: 281-289.
types, applications and recent developments[J]. Journal of Energy [22] QIAN T M, DANG B K, CHEN Y P, et al. Fabrication of magnetic
Storage, 2020, 27: 101047. phase change n-eicosane@Fe 3O 4/SiO 2 microcapsules on wood surface
[3] CHEN J L (陈久林), DUAN Y (段洋), WANG Z X (王志雄). via sol-gel method[J]. Journal of Alloys and Compounds, 2019, 772:
Research and application of phase change heat storage technilogy[J]. 871-876.
Guangdong Chemical Industry (广东化工), 2020, 47(2): 101-104. [23] LU S F, SHEN T W, XING J W, et al. Preparation and characterization
[4] MAGENDRAN S S, KHAN F S A, MUBARAK N M, et al. of cross-linked polyurethane shell microencapsulated phase change
Synthesis of organic phase change materials (PCM) for energy storage materials by interfacial polymerization[J]. Materials Letters, 2018,
applications: A review[J]. Nano-Structures & Nano-Objects, 2019, 211: 36-39.
20: 100399. [24] YANG Y N, XIA R Q, ZHAO J Q, et al. Preparation and thermal
[5] ZHANG N, YUAN Y P, CAO X L, et al. Latent heat thermal energy properties of microencapsulated polyurethane and double-component
storage systems with solid-liquid phase change materials: A review[J]. poly(ethylene glycol) as phase change material for thermal energy
Advanced Engineering Materials, 2018, 20(6): 1700753. storage by interfacial polymerization[J]. Energy & Fuels, 2020,
[6] ZHAO Y J, MIN X, HUANG Z H, et al. Honeycomb-like structured 34(1): 1024-1032.
biological porous carbon encapsulating PEG: A shape-stable phase [25] WANG L J (王灵娟). Study on polyurethane based form-stable phase
change material with enhanced thermal conductivity for thermal change composite with high energy density[D]. Dalian: Dalian
energy storage[J]. Energy and Buildings, 2018, 158: 1049-1062. University of Technology (大连理工大学), 2016.
[7] MENG Q H, HU J L. A poly(ethylene glycol)-based smart phase [26] LU X, HUANG J T, WONG W Y, et al. A novel bio-based
change material[J]. Solar Energy Materials and Solar Cells, 2008, polyurethane/wood powder composite as shape-stable phase change
92(10): 1260-1268. material with high relative enthalpy efficiency for solar thermal
[8] ALKAN C, GÜNTHER E, HIEBLER S, et al. Polyurethanes as energy storage[J]. Solar Energy Materials and Solar Cells, 2019, 200:
solid-solid phase change materials for thermal energy storage[J]. 109987.
Solar Energy, 2012, 86(6): 1761-1769. [27] MORAD G, NASSIRI P, ERSHAD-LANGROUDI A, et al. Acoustical,
[9] CHEN K, LIU R W, ZOU C, et al. Linear polyurethane ionomers as damping and thermal properties of polyurethane/poly(methyl
solid-solid phase change materials for thermal energy storage[J]. Solar methacrylate)-based semi-interpenetrating polymer network foams[J].
Energy Materials and Solar Cells, 2014, 130: 466-473. Plastics, Rubber and Composites, 2018, 47(5): 221-231.
[10] SU J C (粟劲苍), LIU P S (刘朋生). Effet of hard and segments on [28] LIU Z M, ZHANG Y Y, HU K, et al. Preparation and properties of
the heat storage properties of polyurethane glycol-based polyurethanes[J]. polyethylene glycol based semi-interpenetrating polymer network as
Acta Polymerica Sinica (高分子学报), 2007, 38(2): 97-102. novel form-stable phase change materials for thermal energy
[11] CAO Q (曹琪), LIU P S (刘朋生). Transition characteristics and storage[J]. Energy and Buildings, 2016, 127: 327-336.
morphology of cross linking polyurethane solid-solid phase change [29] KUMAR H, SIDDARAMAIAH R, SOMASHEKAR R, et al.
material[J]. Chinese Journal of Applied Chemistry (应用化学), 2007, Structure-property relationship of polyethylene glycol-based PU/PAN
24(6): 652-655. semi-interpenetrating polymer networks[J]. Journal of Applied Polymer
[12] LU X, FANG C, SHENG X X, et al. One-step and solvent-free Science, 2006, 99(1): 177-187.
synthesis of polyethylene glycol-based polyurethane as solid-solid [30] ZHANG Y A, XIU J H, TANG B T, et al. Novel semi-interpenetrating
phase change materials for solar thermal energy storage[J]. Industrial network structural phase change composites with high phase change
& Engineering Chemistry Research, 2019, 58(8): 3024-3032. enthalpy[J]. AIChE Journal, 2018, 64(2): 688-696.
[13] ZHOU Y, LIU X D, SHENG D K, et al. Polyurethane-based solid- [31] IBRAHIM N I, AL-SULAIMAN F A, RAHMAN S, et al. Heat
solid phase change materials with in situ reduced graphene oxide for transfer enhancement of phase change materials for thermal energy
light-thermal energy conversion and storage[J]. Chemical Engineering storage applications: A critical review[J]. Renewable and Sustainable
Journal, 2018, 338: 117-125. Energy Reviews, 2017, 74: 26-50.
[14] LIU Z M, FU X W, JIANG L, et al. Solvent-free synthesis and [32] WU S F, YAN T, KUAI Z H, et al. Thermal conductivity enhancement
properties of novel solid-solid phase change materials with on phase change materials for thermal energy storage: A review[J].
biodegradable castor oil for thermal energy storage[J]. Solar Energy Energy Storage Materials, 2020, 25: 251-295.
Materials and Solar Cells, 2016, 147: 177-184. [33] LI W H, LAI-ISKANDAR S, TAN D, et al. Thermal conductivity
[15] HARLÉ T, NGUYEN G T M, LEDESERT B, et al. Cross-linked enhancement and shape stabilization of phase-change materials using
polyurethane as solid-solid phase change material for low temperature three-dimensional graphene and graphene powder[J]. Energy & Fuels,
thermal energy storage[J]. Thermochimica Acta, 2020, 685: 178191. 2020, 34(2): 2435-2444.
[16] CHENG L L (程璐璐), YANG J S (杨建森), CAO X Y (曹向阳), [34] AL-SHANNAQ R, KURDI J, AL-MUHTASEB S, et al. Innovative
et al. Research on thermal properties of microcapsule phase change method of metal coating of microcapsules containing phase change
materials prepared by in-situ polymerization[J]. New Building materials[J]. Solar Energy, 2016, 129: 54-64.
Materials (新型建筑材料), 2019, 46(7): 89-93. [35] KARTHIK M, FAIK A, BLANCO-RODRÍGUEZ P, et al. Preparation
[17] FENG L L, ZHENG J, YANG H Z, et al. Preparation and of erythritol-graphite foam phase change composite with enhanced
characterization of polyethylene glycol/active carbon composites as thermal conductivity for thermal energy storage applications[J].
shape-stabilized phase change materials[J]. Solar Energy Materials Carbon, 2015, 94: 266-276.
and Solar Cells, 2011, 95(2): 644-650. (下转第 2215 页)