Page 35 - 《精细化工》2020年第12期
P. 35
第 12 期 谢汶珂,等: 金属有机框架材料光催化还原 CO 2 的应用研究进展 ·2397·
Edition, 2016, 55(18): 5414-5445. framework for efficient photocatalytic reduction of CO 2 to CO: The
[57] SKOBELEV I Y, KOVALENKO K A, FEDIN V P, et al. Allylic influence of doped metal ions[J]. ACS Applied Materials &
oxdation of alkenes with molecular oxygen catalyzed by porous Interfaces, 2020, 12(21): 24059-24065.
coordination polymers Fe-MIL-101 and Cr-MIL-101[J]. Kinetics and [66] LIU X, DANG R, DONG W J, et al. A sandwich-like heterostructure
Catalysis, 2013, 54(5): 607-614. of TiO 2 nanosheets with MIL-100(Fe): A platform for efficient
[58] CAVKA J H, JAKOBSEN S, OLSBYE U, et al. A new zirconium visible-light-driven photocatalysis[J]. Applied Catalysis B-Environmental,
inorganic building brick forming metal organic frameworks with 2017, 209: 506-513.
exceptional stability[J]. Journal of the American Chemical Society, [67] HONG D C, TSUKAKOSHI Y, KOTANI H, et al. Visible-light-
2008, 130(42): 13850-13851. driven photocatalytic CO 2 reduction by a Ni (Ⅱ) complex bearing a
[59] SHEN L J, LIANG R W, LUO M B, et al. Electronic effects of ligand bioinspired tetradentate ligand for selective CO production[J].
substitution on metal-organic framework photocatalysts: The case Journal of the American Chemical Society, 2017, 139(19): 6538-6541.
study of UiO-66[J]. Physical Chemistry Chemical Physics, 2015, [68] YAN Z H, MA B, LI S R, et al. Encapsulating a Ni (Ⅱ) molecular
17(1): 117-121. catalyst in photoactive metal-organic framework for highly efficient
[60] LIN W Y, FREI H. Photochemical CO 2 splitting by metal-to-metal photoreduction of CO 2[J]. Science Bulletin, 2019, 64(14): 976-985.
charge-transfer excitation in mesoporous ZrCu (Ⅰ )-MCM-41 silicate [69] WANG H L, ZHU Q L,ZOU R Q, et al. Metal-organic frameworks
sieve[J]. Journal of the American Chemical Society, 2005, 127(6): for energy applications[J]. Chem, 2017, 2(1): 52-80.
1610-1611. [70] YIN Y D, RIOUX R M, ERDONMEZ C K, et al. Formation of
[61] WANG C, XIE Z G, DEKRAFFT K E, et al. Doping metal-organic hollow nanocrystals through the nanoscale Kirkendall effect[J].
frameworks for water oxidation, carbon dioxide reduction, and Science, 2004, 304(5671): 711-714.
organic photocatalysis[J]. Journal of the American Chemical Society, [71] HU Y, GAO X H, YU L, et al. Carbon-coated CdS petalous
2011, 133(34): 13445-13454. nanostructures with enhanced photostability and photocatalytic activity[J].
[62] ZHANG S Q, LI L N, ZHAO S E, et al. Hierarchical metal-organic Angewandte Chemie-International Edition, 2013, 52(21): 5636-5639.
framework nanoflowers for effective CO 2 transformation driven by [72] MEISSNER D, MEMMING R, KASTENING B. Photoelectrochemistry
visible light[J]. Journal of Materials Chemistry A, 2015, 3(30): of cadmium sulfide. 1. Reanalysis of photocorrosion and flat-band
15764-15768. potential[J]. The Journal of Physical Chemistry, 1988, 92(12): 3476-3483.
[63] LEE Y, KIM S, FEI H H, et al. Photocatalytic CO 2 reduction using [73] LIU Y, DENG L, SHENG J P, et al. Photostable core-shell
visible light by metal-monocatecholato species in a metal-organic CdS/ZIF-8 composite for enhanced photocatalytic reduction of
framework[J]. Chemical Communications, 2015, 51(92): 16549-16552. CO 2[J]. Applied Surface Science, 2019, 498: 143899.
[64] CHEN M M, HAN L, ZHOU J, et al. Photoreduction of carbon [74] WU L Y, MU Y F, GUO X X, et al. Encapsulating perovskite
dioxide under visible light by ultra-small Ag nanoparticles doped into quantum dots in iron-based metal-organic frameworks (MOFs) for
Co-ZIF-9[J]. Nanotechnology, 2018, 29(28): 284003. efficient photocatalytic CO 2 reduction[J]. Angewandte Chemie
[65] GAO X S, GUO B, GUO C M, et al. Zirconium-based metal-organic International Edition, 2019, 58(28): 9491-9495.
(上接第 2385 页) for nanocrystallized metals[J]. Corrosion Science and Protetion
Technology, 2012, 24(3): 187-191.
[48] WU M C, LI Y, AN N, et al. Applied voltage and near-infrared light [57] QIAN H C, XU D, DU C W, et al. Dual-action smart coatings with a
enable healing of superhydrophobicity loss caused by severe scratches in self-healing superhydrophobic surface and anti-corrosion properties[J].
conductive superhydrophobic films[J]. Advanced Functional Materials, Journal of Materials Chemistry A, 2017, 5(5): 2355-2364.
2016, 26: 6777-6784. [58] UZOMA P C, LIU F C, HAN E H. Multi-stimuli-triggered and
[49] MANNA U, LYNN D M. Restoration of superhydrophobicity in self-repairable fluorocarbon organic coatings with urea-formaldehyde
crushed polymer films by treatment with water: Self-healing and microcapsules filled with fluorosilane[J]. Journal of Materials Science &
recovery of damaged topographic features aided by an unlikely Technology, 2020, 45: 70-83.
source[J]. Advanced Materials, 2013, 25(36): 5104-5108. [59] WENG D H, XU F C, LI X, et al. Bioinspired photothermal
[50] DAS A, DEKA J, RAIDONGIA K, et al. Robust and self-healable conversion coatings with self-healing superhydrophobicity for efficient
bulk-superhydrophobic polymeric coating[J]. Chemistry of Materials, solar steam generation[J]. Journal of Materials Chemistry A, 2018,
2017, 29(20): 8720-8728. 6(47): 24441-24451.
[51] ZHAO D L, DU Z K, LIU S S, et al. UV light curable self-healing [60] ZHANG L B, TANG B, WU J B, et al. Hydrophobic light-to-heat
superamphiphobic coatings by photopromoted disulfide exchange conversion membranes with self-healing ability for interfacial solar
reaction[J]. ACS Applied Polymer Materials, 2019, 1(11): 2951-2960. heating[J]. Advanced Materials, 2015, 27(33): 4889-4894.
[52] QIN L M, CHU Y, ZHOU X, et al. Fast healable superhydrophobic [61] LI B, KAN L, ZHANG S, et al. Planting carbon nanotubes onto
material[J]. ACS Applied Materials & Interfaces, 2019, 11(32): supramolecular polymer matrices for waterproof non-contact self-
29388-29395. healing[J]. Nanoscale, 2019, 11(2): 467-473.
[53] FU Y H, XU F C, WENG D H, et al. Superhydrophobic foams with [62] LI X, LI Y, GUAN T T, et al. Durable, highly electrically conductive
chemical- and mechanical-damage-healing abilities enabled by cotton fabrics with healable superamphiphobicity[J]. ACS Applied
self-healing polymers[J]. ACS Applied Materials & Interfaces, 2019, Materials & Interfaces, 2018, 10(14): 12042-12050.
11(40): 37285-37294. [63] WU M C, MA B H, PAN T Z, et al. Silver-nanoparticle-colored
[54] LI X A (李雪爱), WANG W B (王文彪). The harm and protection of cotton fabrics with tunable colors and durable antibacterial and self-
metal corrosion[J]. Chemical Enterprise Management (化工管理), healing superhydrophobic properties[J]. Advanced Functional Materials,
2013,12(6): 158. 2016, 26(4): 569-576.
[55] HOU B R (侯保荣). The cost of corrosion in China[M]. Beijing: [64] SU X J, LI H Q, LAI X J, et al. Bioinspired superhydrophobic
Science Press (科学出版社), 2017: 9-11. thermochromic films with robust healability[J]. ACS Applied Materials &
[56] ZHANG L L, YAN Z , WANG J, et al. Progress of corrosion research Interfaces, 2020, 12(12): 14578-14587.