Page 35 - 《精细化工》2020年第12期
P. 35

第 12 期                 谢汶珂,等:  金属有机框架材料光催化还原 CO 2 的应用研究进展                               ·2397·


                 Edition, 2016, 55(18): 5414-5445.                 framework for efficient photocatalytic reduction of CO 2 to CO: The
            [57]  SKOBELEV I  Y,  KOVALENKO  K A, FEDIN V P,  et al. Allylic   influence of  doped metal ions[J]. ACS  Applied Materials &
                 oxdation of alkenes with molecular oxygen catalyzed by porous   Interfaces, 2020, 12(21): 24059-24065.
                 coordination polymers Fe-MIL-101 and Cr-MIL-101[J]. Kinetics and   [66]  LIU X, DANG R, DONG W J, et al. A sandwich-like heterostructure
                 Catalysis, 2013, 54(5): 607-614.                  of TiO 2  nanosheets with MIL-100(Fe): A platform for efficient
            [58]  CAVKA J H, JAKOBSEN S, OLSBYE U, et al. A new zirconium   visible-light-driven photocatalysis[J]. Applied Catalysis B-Environmental,
                 inorganic building brick forming metal organic frameworks with   2017, 209: 506-513.
                 exceptional stability[J]. Journal of the American Chemical Society,   [67]  HONG D C, TSUKAKOSHI  Y,  KOTANI  H,  et al. Visible-light-
                 2008, 130(42): 13850-13851.                       driven photocatalytic CO 2 reduction by a Ni (Ⅱ) complex bearing a
            [59]  SHEN L J, LIANG R W, LUO M B, et al. Electronic effects of ligand   bioinspired tetradentate ligand for  selective CO production[J].
                 substitution on metal-organic framework photocatalysts: The case   Journal of the American Chemical Society, 2017, 139(19): 6538-6541.
                 study of UiO-66[J]. Physical Chemistry Chemical Physics, 2015,   [68]  YAN Z H, MA B, LI S R, et al. Encapsulating a Ni (Ⅱ) molecular
                 17(1): 117-121.                                   catalyst in photoactive metal-organic framework for highly efficient
            [60]  LIN W Y, FREI H. Photochemical CO 2 splitting by metal-to-metal   photoreduction of CO 2[J]. Science Bulletin, 2019, 64(14): 976-985.
                 charge-transfer excitation in mesoporous ZrCu (Ⅰ )-MCM-41 silicate   [69]  WANG H L, ZHU Q L,ZOU R Q, et al. Metal-organic frameworks
                 sieve[J]. Journal of the American Chemical Society, 2005, 127(6):   for energy applications[J]. Chem, 2017, 2(1): 52-80.
                 1610-1611.                                    [70]  YIN Y D, RIOUX R M, ERDONMEZ C K,  et al. Formation of
            [61]  WANG C, XIE Z G, DEKRAFFT K E, et al. Doping metal-organic   hollow nanocrystals through the nanoscale Kirkendall  effect[J].
                 frameworks for water oxidation, carbon dioxide reduction, and   Science, 2004, 304(5671): 711-714.
                 organic photocatalysis[J]. Journal of the American Chemical Society,   [71]  HU Y, GAO X  H, YU L,  et al. Carbon-coated CdS petalous
                 2011, 133(34): 13445-13454.                       nanostructures with enhanced photostability and photocatalytic activity[J].
            [62]  ZHANG S Q, LI L N, ZHAO S E, et al. Hierarchical metal-organic   Angewandte Chemie-International Edition, 2013, 52(21): 5636-5639.
                 framework nanoflowers for effective CO 2 transformation driven by   [72]  MEISSNER D, MEMMING R, KASTENING B. Photoelectrochemistry
                 visible light[J]. Journal  of Materials Chemistry A, 2015, 3(30):   of cadmium sulfide. 1. Reanalysis of photocorrosion and flat-band
                 15764-15768.                                      potential[J]. The Journal of Physical Chemistry, 1988, 92(12): 3476-3483.
            [63]  LEE Y, KIM S, FEI H H, et al. Photocatalytic CO 2 reduction using   [73]  LIU Y,  DENG L, SHENG J P,  et al. Photostable core-shell
                 visible light by metal-monocatecholato species in a  metal-organic   CdS/ZIF-8 composite for enhanced photocatalytic reduction of
                 framework[J]. Chemical Communications, 2015, 51(92): 16549-16552.   CO 2[J]. Applied Surface Science, 2019, 498: 143899.
            [64]  CHEN M M, HAN L,  ZHOU J,  et al. Photoreduction  of carbon   [74]  WU L Y, MU  Y  F, GUO X X,  et al. Encapsulating  perovskite
                 dioxide under visible light by ultra-small Ag nanoparticles doped into   quantum dots in iron-based metal-organic frameworks (MOFs) for
                 Co-ZIF-9[J]. Nanotechnology, 2018, 29(28): 284003.   efficient photocatalytic CO 2 reduction[J]. Angewandte Chemie
            [65]  GAO X S, GUO B, GUO C M, et al. Zirconium-based metal-organic   International Edition, 2019, 58(28): 9491-9495.


            (上接第 2385 页)                                           for nanocrystallized metals[J]. Corrosion Science  and Protetion
                                                                   Technology, 2012, 24(3): 187-191.
            [48]  WU M C, LI Y, AN N, et al. Applied voltage and near-infrared light   [57]  QIAN H C, XU D, DU C W, et al. Dual-action smart coatings with a
                 enable healing of superhydrophobicity loss caused by severe scratches in   self-healing superhydrophobic surface and anti-corrosion properties[J].
                 conductive superhydrophobic films[J].  Advanced Functional Materials,   Journal of Materials Chemistry A, 2017, 5(5): 2355-2364.
                 2016, 26: 6777-6784.                          [58]  UZOMA P C, LIU F  C, HAN E  H. Multi-stimuli-triggered and
            [49]  MANNA U, LYNN D M. Restoration of superhydrophobicity in   self-repairable fluorocarbon organic coatings with urea-formaldehyde
                 crushed  polymer films by treatment  with water: Self-healing and   microcapsules filled with fluorosilane[J]. Journal of Materials Science &
                 recovery of damaged topographic features aided by an unlikely   Technology, 2020, 45: 70-83.
                 source[J]. Advanced Materials, 2013, 25(36): 5104-5108.   [59]  WENG  D H, XU F C,  LI X,  et al. Bioinspired photothermal
            [50]  DAS A, DEKA J, RAIDONGIA K, et al. Robust and self-healable   conversion  coatings with self-healing superhydrophobicity for  efficient
                 bulk-superhydrophobic polymeric coating[J]. Chemistry of Materials,   solar steam generation[J]. Journal of Materials Chemistry A, 2018,
                 2017, 29(20): 8720-8728.                          6(47): 24441-24451.
            [51]  ZHAO D L, DU Z K, LIU S S, et al. UV light curable self-healing   [60]  ZHANG L B, TANG B, WU J B, et al. Hydrophobic light-to-heat
                 superamphiphobic coatings  by photopromoted disulfide exchange   conversion membranes with self-healing ability for interfacial solar
                 reaction[J]. ACS Applied Polymer Materials, 2019, 1(11): 2951-2960.   heating[J]. Advanced Materials, 2015, 27(33): 4889-4894.
            [52]  QIN L M, CHU Y, ZHOU X, et al. Fast healable superhydrophobic   [61]  LI B, KAN L, ZHANG S,  et al. Planting carbon  nanotubes  onto
                 material[J]. ACS  Applied Materials & Interfaces,  2019, 11(32):   supramolecular polymer  matrices for  waterproof non-contact self-
                 29388-29395.                                      healing[J]. Nanoscale, 2019, 11(2): 467-473.
            [53]  FU Y H, XU F C, WENG D H, et al. Superhydrophobic foams with   [62]  LI X, LI Y, GUAN T T, et al. Durable, highly electrically conductive
                 chemical-  and mechanical-damage-healing abilities enabled by   cotton fabrics with healable superamphiphobicity[J]. ACS Applied
                 self-healing polymers[J]. ACS Applied Materials & Interfaces, 2019,   Materials & Interfaces, 2018, 10(14): 12042-12050.
                 11(40): 37285-37294.                          [63]  WU M C, MA B  H, PAN  T Z,  et al. Silver-nanoparticle-colored
            [54]  LI X A (李雪爱), WANG W B (王文彪). The harm and protection of   cotton fabrics with tunable colors and durable antibacterial and self-
                 metal corrosion[J]. Chemical Enterprise Management (化工管理),   healing superhydrophobic properties[J]. Advanced Functional Materials,
                 2013,12(6): 158.                                  2016, 26(4): 569-576.
            [55]  HOU B R  (侯保荣).  The cost of corrosion in China[M]. Beijing:   [64]  SU X J, LI H Q, LAI X J,  et al. Bioinspired superhydrophobic
                 Science Press (科学出版社), 2017: 9-11.                thermochromic films with robust healability[J]. ACS Applied Materials &
            [56]  ZHANG L L, YAN Z , WANG J, et al. Progress of corrosion research   Interfaces, 2020, 12(12): 14578-14587.
   30   31   32   33   34   35   36   37   38   39   40