Page 34 - 《精细化工》2020年第12期
P. 34
·2396· 精细化工 FINE CHEMICALS 第 37 卷
incorporating Fe 3O 4 nanoparticles, post-synthetically modified with hosted in stable metal-organic frameworks for tunable CO 2
Schiff base and Pd. A highly active, magnetically recoverable, photoreduction[J]. ACS Catalysis, 2019, 9(3): 1726-1732.
recyclable catalyst for CC cross-couplings at low Pd loadings[J]. [40] ZHANG H B, WEI J, DONG J C, et al. Efficient visible-light-driven
Journal of Catalysis, 2018, 361: 116-125. carbon dioxide reduction by a single-atom implanted metal-organic
[21] BURTCH N C, HEINEN J, BENNETT T D, et al. Mechanical framework[J]. Angewandte Chemie-International Edition, 2016, 55(46):
properties in metal-organic frameworks: Emerging opportunities and 14308-14312.
challenges for device functionality and technological applications[J]. [41] SUN D R, LIU W J, FU Y H, et al. Noble metals can have different
Advanced Materials, 2018, 30(37): 1704124. effects on photocatalysis over metal-organic frameworks (MOFs): A
[22] WOELLNER M, HAUSDORF S, KLEIN N, et al. Adsorption and case atudy on M/NH 2-MIL-125(Ti) (M=Pt and Au)[J]. Chemistry-A
detection of hazardous trace gases by metal-organic frameworks[J]. European Journal, 2014, 20(16): 4780-4788.
Advanced Materials, 2018, 30(37): 1704679. [42] SUN D R, LIU W J, QIU M, et al. Introduction of a mediator for
[23] LI P Z, WANG X J, LIU J, et al. Highly effective carbon fixation via enhancing photocatalytic performance via post-synthetic metal exchange
catalytic conversion of CO 2 by an acylamide-containing metal-organic in metal-organic frameworks (MOFs)[J]. Chemical Communications,
framework[J]. Chemistry of Materials, 2017, 29(21): 9256-9261. 2015, 51(11): 2056-2059.
[24] YANG D, GATES B C. Catalysis by metal organic frameworks: [43] FEI H H, SAMPSON M D, LEE Y, et al. Photocatalytic CO 2
Perspective and suggestions for future research[J]. ACS Catalysis, reduction to formate using a Mn(Ⅰ) molecular catalyst in a robust
2019, 9(3): 1779-1798. metal-organic framework[J]. Inorganic Chemistry, 2015, 54(14):
[25] YOON M, SRIRAMBALAJI R, KIM K. Homochiral metal-organic 6821-6828.
frameworks for asymmetric heterogeneous catalysis[J]. Chemical [44] DENG X Y, ALBERO J, XU L Z, et al. Construction of a stable
Reviews, 2012, 112(2): 1196-1231. Ru-Re hybrid system based on multifunctional MOF-253 for efficient
[26] JI P F, MANNA K, LIN Z K, et al. Single-site cobalt catalysts at new photocatalytic CO 2 reduction[J]. Inorganic Chemistry, 2018, 57(14):
Zr 8(μ 2-O) 8(μ 2-OH) 4 metal-organic framework nodes for highly active 8276-8286.
hydrogenation of alkenes, imines, carbonyls, and heterocycles[J]. [45] SUN D R, GAO Y H, FU J L, et al. Construction of a supported Ru
Journal of the American Chemical Society, 2016, 138(37): 12234-12242. complex on bifunctional MOF-253 for photocatalytic CO 2 reduction
[27] ZHU L, LIU X Q, JIANG H L, et al. Metal-organic frameworks for under visible light[J]. Chemical Communications, 2015, 51(13):
heterogeneous basic catalysis[J]. Chemical Reviews, 2017, 117(12): 2645-2648.
8129-8176. [46] LIU Q, LOW Z X, LI L X, et al. ZIF-8/Zn 2GeO 4 nanorods with an
[28] GAN W, FU X C, ZHANG J. Ag@AgCl decorated graphene-like enhanced CO 2 adsorption property in an aqueous medium for
TiO 2 nanosheets with nearly 100% exposed (001) facets for efficient photocatalytic synthesis of liquid fuel[J]. Journal of Materials
solar light photocatalysis[J]. Materials Science and Engineering Chemistry A, 2013, 1(38): 11563-11569.
B-Advanced Functional Solid-State Materials, 2018, 229: 44-52. [47] WANG S B, LIN J L, WANG X C. Semiconductor-redox catalysis
[29] TAHERI M E, PETALA A, FRONTISTIS Z, et al. Fast photocatalytic promoted by metal-organic frameworks for CO 2 reduction[J].
degradation of bisphenol A by Ag 3PO 4/TiO 2 composites under solar Physical Chemistry Chemical Physics, 2014, 16(28): 14656-14660.
radiation[J]. Catalysis Today, 2017, 280: 99-107. [48] WANG S B, WANG X C. Photocatalytic CO 2 reduction by CdS
[30] GAO C, WANG J, XU H X, et al. Coordination chemistry in the promoted with a zeolitic imidazolate framework[J]. Applied Catalysis
design of heterogeneous photocatalysts[J]. Chemical Society Reviews, B-Environmental, 2015, 162: 494-500.
2017, 46(10): 2799-2823. [49] WANG M, LIU J X, GUO C M, et al. Metal-organic frameworks
[31] CHANG X X, WANG T, GONG J L. CO 2 photo-reduction: Insights (ZIF-67) as efficient cocatalysts for photocatalytic reduction of CO 2:
into CO 2 activation and reaction on surfaces of photocatalysts[J]. The role of the morphology effect[J]. Journal of Materials Chemistry
Energy & Environmental Science, 2016, 9(7): 2177-2196. A, 2018, 6(11): 4768-4775.
[32] DENG X Y, LI Z H, GARCÍA H. Visible light induced organic [50] QIN J N, WANG S B, WANG X C. Visible-light reduction CO 2 with
transformations using metal-organic-frameworks (MOFs)[J]. dodecahedral zeolitic imidazolate framework ZIF-67 as an efficient
Chemistry-A European Journal, 2017, 23(47): 11189-11209. co-catalyst[J]. Applied Catalysis B-Environmental, 2017, 209: 476-482.
[33] WANG D K, HUANG R K, LIU W J, et al. Fe-based MOFs for [51] WANG H J, WU D P, YANG C, et al. Multi-functional amorphous
photocatalytic CO 2 reduction: Role of coordination unsaturated sites TiO 2 layer on ZIF-67 for enhanced CO 2 photoreduction performances
and dual excitation pathways[J]. ACS Catalysis, 2014, 4(12): 4254-4260. under visible light[J]. Journal of CO 2 Utilization, 2019, 34: 411-421.
[34] SUN D R, FU Y H, LIU W J, et al. Studies on photocatalytic CO 2 [52] SUN M Y, YAN S Y, SUN Y J, et al. Enhancement of visible-
reduction over NH 2-UiO-66 (Zr) and its derivatives: Towards a better light-driven CO 2 reduction performance using an amine-functionalized
understanding of photocatalysis on metal-organic frameworks[J]. zirconium metal-organic framework[J]. Dalton Transactions, 2018,
Chemistry-A European Journal, 2013, 19(42): 14279-14285. 47(3): 909-915.
[35] CHEN Y, WANG D K, DENG X Y, et al. Metal-organic frameworks [53] SU Y Q, XU H T, WANG J J, et al. Nanorattle Au@PtAg
(MOFs) for photocatalytic CO 2 reduction[J]. Catalysis Science & encapsulated in ZIF-8 for enhancing CO 2 photoreduction to CO[J].
Technology, 2017, 7(21): 4893-4904. Nano Research, 2019, 12(3): 625-630.
[36] GAO C, WANG J, XU H X, et al. Artificial Z-scheme photocatalytic [54] MENG Y J, ZHANG L X, JIU H F, et al. Construction of
system: What have been done and where to go[J]. Chemical Society g-C 3N 4/ZIF-67 photocatalyst with enhanced photocatalytic CO 2
Reviews, 2017, 46(10): 2799-2823. reduction activity[J]. Materials Science in Semiconductor Processing,
[37] XIE Y, FANG Z B, LI L, et al. Creating chemisorption sites for 2019, 95: 35-41.
enhanced CO 2 photoreduction activity through alkylamine modification [55] TU W G, ZHOU Y, ZOU Z G. Photocatalytic conversion of CO 2 into
of MIL-101-Cr[J]. ACS Applied Materials & Interfaces, 2019, 11(30): renewable hydrocarbon fuels: State-of-the-art accomplishment,
27017-27023. ahallenges, and prospects[J]. Advanced Materials, 2014, 26(27):
[38] HAN N, DING P, HE L, et al. Promises of main group metal-based 4607-4626.
nanostructured materials for electrochemical CO 2 reduction to [56] DHAKSHINAMOORTHY A, ASIRI A M, GARCIA H. Metal-organic
formate[J].Adv Energy Mater, 2020, 10:1902338. framework (MOF) compounds: Photocatalysts for redox reactions
[39] WANG X K, LIU J, ZHANG L, et al. Monometallic catalytic models and solar fuel production[J]. Angewandte Chemie International