Page 34 - 《精细化工》2020年第12期
P. 34

·2396·                            精细化工   FINE CHEMICALS                                 第 37 卷

                 incorporating Fe 3O 4 nanoparticles, post-synthetically  modified with   hosted in  stable metal-organic frameworks for tunable CO 2
                 Schiff base and Pd. A highly active,  magnetically recoverable,   photoreduction[J]. ACS Catalysis, 2019, 9(3): 1726-1732.
                 recyclable catalyst  for CC cross-couplings at low Pd loadings[J].   [40]  ZHANG H B, WEI J, DONG J C, et al. Efficient visible-light-driven
                 Journal of Catalysis, 2018, 361: 116-125.         carbon dioxide reduction by a single-atom implanted metal-organic
            [21]  BURTCH N C, HEINEN J, BENNETT  T D,  et al. Mechanical   framework[J]. Angewandte Chemie-International Edition, 2016, 55(46):
                 properties in metal-organic frameworks: Emerging opportunities and   14308-14312.
                 challenges for device functionality and technological applications[J].   [41]  SUN D R, LIU W J, FU Y H, et al. Noble metals can have different
                 Advanced Materials, 2018, 30(37): 1704124.        effects on photocatalysis over metal-organic frameworks (MOFs): A
            [22]  WOELLNER M, HAUSDORF S, KLEIN N, et al. Adsorption and   case atudy on M/NH 2-MIL-125(Ti) (M=Pt and Au)[J]. Chemistry-A
                 detection of hazardous trace gases by metal-organic frameworks[J].   European Journal, 2014, 20(16): 4780-4788.
                 Advanced Materials, 2018, 30(37): 1704679.    [42]  SUN D R, LIU W J, QIU M, et al. Introduction of a mediator for
            [23]  LI P Z, WANG X J, LIU J, et al. Highly effective carbon fixation via   enhancing photocatalytic performance via post-synthetic metal exchange
                 catalytic conversion of CO 2 by an acylamide-containing metal-organic   in metal-organic frameworks (MOFs)[J]. Chemical Communications,
                 framework[J]. Chemistry of Materials, 2017, 29(21): 9256-9261.   2015, 51(11): 2056-2059.
            [24]  YANG  D, GATES B C.  Catalysis by  metal organic frameworks:   [43]  FEI H H, SAMPSON M D, LEE Y,  et al. Photocatalytic CO 2
                 Perspective and  suggestions for future research[J]. ACS Catalysis,   reduction to formate using a Mn(Ⅰ) molecular catalyst in a robust
                 2019, 9(3): 1779-1798.                            metal-organic framework[J]. Inorganic Chemistry, 2015, 54(14):
            [25]  YOON M, SRIRAMBALAJI R, KIM K. Homochiral metal-organic   6821-6828.
                 frameworks  for asymmetric heterogeneous catalysis[J]. Chemical   [44]  DENG  X Y,  ALBERO J, XU  L Z,  et al. Construction  of a stable
                 Reviews, 2012, 112(2): 1196-1231.                 Ru-Re hybrid system based on multifunctional MOF-253 for efficient
            [26]  JI P F, MANNA K, LIN Z K, et al. Single-site cobalt catalysts at new   photocatalytic CO 2 reduction[J]. Inorganic Chemistry, 2018, 57(14):
                 Zr 8(μ 2-O) 8(μ 2-OH) 4 metal-organic framework nodes for highly active   8276-8286.
                 hydrogenation  of alkenes, imines, carbonyls, and  heterocycles[J].   [45]  SUN D R, GAO Y H, FU J L, et al. Construction of a supported Ru
                 Journal of the American Chemical Society, 2016, 138(37): 12234-12242.   complex on bifunctional MOF-253 for photocatalytic CO 2 reduction
            [27]  ZHU L, LIU X Q, JIANG H L, et al. Metal-organic frameworks for   under visible light[J]. Chemical  Communications, 2015, 51(13):
                 heterogeneous basic catalysis[J]. Chemical Reviews, 2017, 117(12):   2645-2648.
                 8129-8176.                                    [46]  LIU Q, LOW Z X, LI L X, et al. ZIF-8/Zn 2GeO 4 nanorods with an
            [28]  GAN W, FU X C, ZHANG J. Ag@AgCl decorated graphene-like   enhanced CO 2 adsorption  property in an aqueous medium for
                 TiO 2 nanosheets with nearly 100% exposed (001) facets for efficient   photocatalytic synthesis of liquid fuel[J]. Journal of  Materials
                 solar light photocatalysis[J]. Materials Science and Engineering   Chemistry A, 2013, 1(38): 11563-11569.
                 B-Advanced Functional Solid-State Materials, 2018, 229: 44-52.   [47]  WANG S B, LIN J L, WANG X C. Semiconductor-redox catalysis
            [29]  TAHERI M E, PETALA A, FRONTISTIS Z, et al. Fast photocatalytic   promoted by metal-organic frameworks for CO 2 reduction[J].
                 degradation of bisphenol A by Ag 3PO 4/TiO 2 composites under solar   Physical Chemistry Chemical Physics, 2014, 16(28): 14656-14660.
                 radiation[J]. Catalysis Today, 2017, 280: 99-107.   [48]  WANG  S  B, WANG X C.  Photocatalytic CO 2 reduction by CdS
            [30]  GAO C, WANG J, XU H X,  et al. Coordination chemistry in the   promoted with a zeolitic imidazolate framework[J]. Applied Catalysis
                 design of heterogeneous photocatalysts[J]. Chemical Society Reviews,   B-Environmental, 2015, 162: 494-500.
                 2017, 46(10): 2799-2823.                      [49]  WANG M, LIU J  X, GUO C M,  et al. Metal-organic frameworks
            [31]  CHANG X X, WANG T, GONG J L. CO 2 photo-reduction: Insights   (ZIF-67) as efficient cocatalysts for photocatalytic reduction of CO 2:
                 into CO 2  activation and reaction on surfaces of photocatalysts[J].   The role of the morphology effect[J]. Journal of Materials Chemistry
                 Energy & Environmental Science, 2016, 9(7): 2177-2196.   A, 2018, 6(11): 4768-4775.
            [32]  DENG  X Y, LI Z H, GARCÍA H.  Visible light induced organic   [50]  QIN J N, WANG S B, WANG X C. Visible-light reduction CO 2 with
                 transformations  using  metal-organic-frameworks  (MOFs)[J].  dodecahedral zeolitic imidazolate framework ZIF-67 as an efficient
                 Chemistry-A European Journal, 2017, 23(47): 11189-11209.   co-catalyst[J]. Applied Catalysis B-Environmental, 2017, 209: 476-482.
            [33]  WANG  D K, HUANG R K, LIU W  J,  et al. Fe-based MOFs for   [51]  WANG H J, WU D P, YANG C, et al. Multi-functional amorphous
                 photocatalytic CO 2 reduction: Role of coordination unsaturated sites   TiO 2 layer on ZIF-67 for enhanced CO 2 photoreduction performances
                 and dual excitation pathways[J]. ACS Catalysis, 2014, 4(12): 4254-4260.   under visible light[J]. Journal of CO 2 Utilization, 2019, 34: 411-421.
            [34]  SUN D R, FU Y H, LIU W J, et al. Studies on photocatalytic CO 2   [52]  SUN M Y, YAN  S Y, SUN  Y J,  et al. Enhancement  of visible-
                 reduction over NH 2-UiO-66 (Zr) and its derivatives: Towards a better   light-driven CO 2 reduction performance using an amine-functionalized
                 understanding of  photocatalysis on  metal-organic frameworks[J].   zirconium metal-organic framework[J]. Dalton Transactions, 2018,
                 Chemistry-A European Journal, 2013, 19(42): 14279-14285.   47(3): 909-915.
            [35]  CHEN Y, WANG D K, DENG X Y, et al. Metal-organic frameworks   [53]  SU Y  Q, XU H  T,  WANG J J,  et al. Nanorattle  Au@PtAg
                 (MOFs) for photocatalytic  CO 2 reduction[J]. Catalysis Science &   encapsulated in ZIF-8 for enhancing  CO 2  photoreduction to CO[J].
                 Technology, 2017, 7(21): 4893-4904.               Nano Research, 2019, 12(3): 625-630.
            [36]  GAO C, WANG J, XU H X, et al. Artificial Z-scheme photocatalytic   [54]  MENG Y J, ZHANG L  X, JIU H F,  et al. Construction  of
                 system: What have been done and where to go[J]. Chemical Society   g-C 3N 4/ZIF-67  photocatalyst with enhanced photocatalytic CO 2
                 Reviews, 2017, 46(10): 2799-2823.                 reduction activity[J]. Materials Science in Semiconductor Processing,
            [37]  XIE  Y, FANG Z  B, LI L,  et al. Creating chemisorption sites  for   2019, 95: 35-41.
                 enhanced CO 2 photoreduction activity through alkylamine modification   [55]  TU W G, ZHOU Y, ZOU Z G. Photocatalytic conversion of CO 2 into
                 of MIL-101-Cr[J]. ACS Applied Materials & Interfaces, 2019, 11(30):   renewable hydrocarbon fuels: State-of-the-art accomplishment,
                 27017-27023.                                      ahallenges, and prospects[J]. Advanced Materials, 2014, 26(27):
            [38]  HAN N, DING P, HE L, et al. Promises of main group metal-based   4607-4626.
                 nanostructured materials for electrochemical CO 2 reduction to   [56]  DHAKSHINAMOORTHY A, ASIRI A M, GARCIA H. Metal-organic
                 formate[J].Adv Energy Mater, 2020, 10:1902338.    framework (MOF) compounds: Photocatalysts for  redox reactions
            [39]  WANG X K, LIU J, ZHANG L, et al. Monometallic catalytic models   and solar fuel production[J]. Angewandte Chemie International
   29   30   31   32   33   34   35   36   37   38   39