Page 33 - 《精细化工》2020年第12期
P. 33

第 12 期                 谢汶珂,等:  金属有机框架材料光催化还原 CO 2 的应用研究进展                               ·2395·


                 该研究为提高钙钛矿量子点的稳定性及光生电                          [3]   KHO E T, TAN T H, LOVELL E, et al. A review on photo-thermal
            荷分离提供了一种有效方案,拓宽了该类型材料在                                 catalytic conversion of carbon dioxide[J]. Green Energy & Environment,
                                                                   2017, 2(3): 204-217.
            光催化还原 CO 2 人工光合作用领域的实际应用。                          [4]   GOORTANI B M, GAURAV A, DESHPANDE A, et al. Production
                                                                   of isooctane from isobutene: Energy integration and carbon dioxide
            3   结语与展望                                              abatement via catalytic distillation[J]. Industrial & Engineering Chemistry
                                                                   Research, 2015, 54(14): 3570-3581.
                                                               [5]   SUN J, CHENG  W G,  YANG  Z F,  et al. Superbase/cellulose: An
                 催化反应大都发生在材料的表面,必然会造成
                                                                   environmentally benign catalyst for  chemical fixation  of carbon
            内部材料的浪费,而 MOFs 较高的比表面积,有效                              dioxide into cyclic carbonates[J]. Green  Chemistry, 2014, 16(6):
            地克服了这一缺陷;可调节的孔径能够实现反应物                                 3071-3078.
                                                               [6]   LUO D M, CHEN C C, ZHANG N, et al. Characterization and DFT
            与产物的选择性吸、脱附,显著提高体系的催化效                                 research of Nd/TiO 2: Photocatalyst for synthesis  of methanol from
            率,在解决能源和环境问题方面具有巨大潜力。除                                 CO 2  and H 2O[J]. Zeitschrift Fur  Physikalische Chemie, 2009,
                                                                   223(12): 1465-1476.
            此之外,利用取之不尽的太阳能,将 CO 2 还原转化
                                                               [7]   FU Y H, SUN  D  G, CHEN  Y J,  et al. An amine-functionalized
            为有机分子,这是人类对植物光合作用的模拟,也                                 titanium  metal-organic framework photocatalyst with visible-light-
            是 MOFs 光催化还原 CO 2 的研究方向,具有广阔的                          induced activity for CO 2 reduction[J]. Angewandte Chemie-International
                                                                   Edition, 2012, 51(14): 3364-3367.
            应用前景。                                              [8]   ZHAO Z H, FAN J M, XIE M M, et al. Photo-catalytic reduction of
                 通过对光催化还原 CO 2 机理的分析,MOFs 光                        carbon dioxide with in-situ synthesized CoPc/TiO 2 under visible light
                                                                   irradiation[J]. Journal of Cleaner Production, 2009, 17(11): 1025-1029.
            催化还原 CO 2 过程需要考虑可见光吸收、CO 2 的吸
                                                               [9]   TANG L, ZHANG S B, WU Q L,  et al. Heterobimetallic metal
            附和 CO 2 的催化还原 3 个步骤。为增加体系对可见                           organic framework nanocages as highly efficient catalysts for CO 2
            光的吸收,过渡金属及其氧化物、含羧基或 N、S                                conversion under mild conditions[J]. Journal of Materials Chemistry
                                                                   A, 2018, 6(7): 2964-2973.
            等元素的不饱和环状有机物成为制备 MOFs 原料的                          [10]  CHEN Y Z, ZHOU Y X, WANG H W, et al. Multifunctional PdAg@
            首选;同时,为增强 MOFs 材料界面对 CO 2 的吸附、                         MIL-101 for one-pot cascade reactions: Combination of  host-guest
                                                                   cooperation and bimetallic synergy in catalysis[J]. ACS  Catalysis,
            加速光激发电子-空穴的生成和转移、完成 CO 2 的还
                                                                   2015, 5(4): 2062-2069.
            原,通常向 MOFs 中掺杂贵金属纳米粒子;或者用氨                         [11]  AN B,  ZHANG J  Z, CHENG  K,  et al. Confinement of ultrasmall
            基、磺酸基等官能团对不饱和环状有机配体进行修饰;                               Cu/ZnO x nanoparticles in metal-organic frameworks for selective
                                                                   methanol synthesis from catalytic hydrogenation of CO 2[J]. Journal
            或者直接外加牺牲剂(H 2O、TEOA/TEA)为体系提                           of the American Chemical Society, 2017, 139(10): 3834-3840.
                          +
            供光生质子(H )参与电子转移和 CO 2 还原反应。                        [12]  JIANG H L, AKITA T, ISHIDA T, et al. Synergistic catalysis of Au@
                 MOFs 光催化 CO 2 拥有诸多优越性能,但是现                        Ag core-shell nanoparticles stabilized on metal-organic framework[J].
                                                                   Journal of the American Chemical Society, 2011, 133(5): 1304-1306.
            有研究结果表明,MOFs 光催化还原 CO 2 仍存在很                       [13]  SCHNEIDER J, MATSUOKA M, TAKEUCHI M, et al. Understanding
            多问题:(1)MOFs 材料仅能实现在实验室条件下                              TiO 2 photocatalysis: Mechanisms and materials[J]. Chemical Reviews,
                                                                   2014, 114(19): 9919-9986.
            小规模转化 CO 2 ,离实际工业和在环境中应用还有                         [14]  DENG Q H, MIAO T F, WANG Z Q, et al. Compositional regulation
            距离;(2)虽然人们对 MOFs 光催化还原 CO 2 的机                         and modification of the host CdS for efficient photocatalytic
            理有了一定程度的认知,但是实际执行条件变化的                                 hydrogen production: Case study on  MoS 2 decorated  Co 0.2Cd 0.8S
                                                                   nanorods[J]. Chemical Engineering Journal, 2019, 378:122139.
            多样性,使得多因素影响 MOFs 光催化还原 CO 2 的                      [15]  BIE C B, ZHU B C, XU F Y, et al. In situ grown monolayer N-doped
            规律需要进一步深入探讨;(3)目前利用 MOFs 进                             graphene on CdS hollow spheres  with seamless contact for
                                                                   photocatalytic CO 2 reduction[J]. Advanced Materials, 2019, 31(42):
            行光催化 CO 2 还原大多是在牺牲剂存在的条件下进                             1902868.
            行的,不符合绿色化学的原则。由于 MOFs 结构中                          [16]  AMOS R I J, HEINROTH F, CHAN B, et al. Hydrogen from formic
            含有机配体,故有可能在水的氧化过程中实现有机                                 acid  via its selective disproportionation over nanodomain-modified
                                                                   zeolites[J]. ACS Catalysis, 2015, 5(7): 4353-4362.
            配体的氧化。另外,将 CO 2 的还原与一些有机物的                         [17]  CAI S D (蔡随东), HAN H H (韩红辉), HAN H L (韩红亮). From
            氧化进行有效耦合有望成为基于 MOFs 光催化还原                              the perspective of industrial catalysis-the future development of
                                                                   zeolites [J]. China Petroleum and Chemical Industry Standards and
            CO 2 的另一发展方向。                                          Quality (中国石油和化工标准与质量), 2012, 33(12): 21.
                                                               [18]  HAO L W, SUN L L, SU T, et al. Polyoxometalate-based ionic liquid
            参考文献:                                                  catalyst with unprecedented activity and selectivity for oxidative
            [1]   SENEVIRATNE S I, DONAT M G, PITMAN A J, et al. Allowable   desulfurization of diesel  in [Omim]BF 4[J]. Chemical Engineering
                 CO 2 emissions based on regional and impact-related climate targets[J].   Journal, 2019, 358: 419-426.
                 Nature, 2016, 529(7587): 477-483.             [19]  ZHANG H R, ZHANG Q, ZHANG L, et al. Acidic polymeric ionic
            [2]   WANG S F, WU Y Z, ZHANG N, et al. A highly permeable graphene   liquids based reduced graphene oxide: An efficient and rewriteable
                 oxide membrane with fast and selective transport nanochannels for   catalyst for oxidative desulfurization[J]. Chemical Engineering
                 efficient carbon capture[J]. Energy & Environmental Science, 2016,   Journal, 2018, 334: 285-295.
                 9(10): 3107-3112.                             [20]  XIONG G, CHEN X L, YOU L X, et al. La-metal-organic framework
   28   29   30   31   32   33   34   35   36   37   38