Page 33 - 《精细化工》2020年第12期
P. 33
第 12 期 谢汶珂,等: 金属有机框架材料光催化还原 CO 2 的应用研究进展 ·2395·
该研究为提高钙钛矿量子点的稳定性及光生电 [3] KHO E T, TAN T H, LOVELL E, et al. A review on photo-thermal
荷分离提供了一种有效方案,拓宽了该类型材料在 catalytic conversion of carbon dioxide[J]. Green Energy & Environment,
2017, 2(3): 204-217.
光催化还原 CO 2 人工光合作用领域的实际应用。 [4] GOORTANI B M, GAURAV A, DESHPANDE A, et al. Production
of isooctane from isobutene: Energy integration and carbon dioxide
3 结语与展望 abatement via catalytic distillation[J]. Industrial & Engineering Chemistry
Research, 2015, 54(14): 3570-3581.
[5] SUN J, CHENG W G, YANG Z F, et al. Superbase/cellulose: An
催化反应大都发生在材料的表面,必然会造成
environmentally benign catalyst for chemical fixation of carbon
内部材料的浪费,而 MOFs 较高的比表面积,有效 dioxide into cyclic carbonates[J]. Green Chemistry, 2014, 16(6):
地克服了这一缺陷;可调节的孔径能够实现反应物 3071-3078.
[6] LUO D M, CHEN C C, ZHANG N, et al. Characterization and DFT
与产物的选择性吸、脱附,显著提高体系的催化效 research of Nd/TiO 2: Photocatalyst for synthesis of methanol from
率,在解决能源和环境问题方面具有巨大潜力。除 CO 2 and H 2O[J]. Zeitschrift Fur Physikalische Chemie, 2009,
223(12): 1465-1476.
此之外,利用取之不尽的太阳能,将 CO 2 还原转化
[7] FU Y H, SUN D G, CHEN Y J, et al. An amine-functionalized
为有机分子,这是人类对植物光合作用的模拟,也 titanium metal-organic framework photocatalyst with visible-light-
是 MOFs 光催化还原 CO 2 的研究方向,具有广阔的 induced activity for CO 2 reduction[J]. Angewandte Chemie-International
Edition, 2012, 51(14): 3364-3367.
应用前景。 [8] ZHAO Z H, FAN J M, XIE M M, et al. Photo-catalytic reduction of
通过对光催化还原 CO 2 机理的分析,MOFs 光 carbon dioxide with in-situ synthesized CoPc/TiO 2 under visible light
irradiation[J]. Journal of Cleaner Production, 2009, 17(11): 1025-1029.
催化还原 CO 2 过程需要考虑可见光吸收、CO 2 的吸
[9] TANG L, ZHANG S B, WU Q L, et al. Heterobimetallic metal
附和 CO 2 的催化还原 3 个步骤。为增加体系对可见 organic framework nanocages as highly efficient catalysts for CO 2
光的吸收,过渡金属及其氧化物、含羧基或 N、S conversion under mild conditions[J]. Journal of Materials Chemistry
A, 2018, 6(7): 2964-2973.
等元素的不饱和环状有机物成为制备 MOFs 原料的 [10] CHEN Y Z, ZHOU Y X, WANG H W, et al. Multifunctional PdAg@
首选;同时,为增强 MOFs 材料界面对 CO 2 的吸附、 MIL-101 for one-pot cascade reactions: Combination of host-guest
cooperation and bimetallic synergy in catalysis[J]. ACS Catalysis,
加速光激发电子-空穴的生成和转移、完成 CO 2 的还
2015, 5(4): 2062-2069.
原,通常向 MOFs 中掺杂贵金属纳米粒子;或者用氨 [11] AN B, ZHANG J Z, CHENG K, et al. Confinement of ultrasmall
基、磺酸基等官能团对不饱和环状有机配体进行修饰; Cu/ZnO x nanoparticles in metal-organic frameworks for selective
methanol synthesis from catalytic hydrogenation of CO 2[J]. Journal
或者直接外加牺牲剂(H 2O、TEOA/TEA)为体系提 of the American Chemical Society, 2017, 139(10): 3834-3840.
+
供光生质子(H )参与电子转移和 CO 2 还原反应。 [12] JIANG H L, AKITA T, ISHIDA T, et al. Synergistic catalysis of Au@
MOFs 光催化 CO 2 拥有诸多优越性能,但是现 Ag core-shell nanoparticles stabilized on metal-organic framework[J].
Journal of the American Chemical Society, 2011, 133(5): 1304-1306.
有研究结果表明,MOFs 光催化还原 CO 2 仍存在很 [13] SCHNEIDER J, MATSUOKA M, TAKEUCHI M, et al. Understanding
多问题:(1)MOFs 材料仅能实现在实验室条件下 TiO 2 photocatalysis: Mechanisms and materials[J]. Chemical Reviews,
2014, 114(19): 9919-9986.
小规模转化 CO 2 ,离实际工业和在环境中应用还有 [14] DENG Q H, MIAO T F, WANG Z Q, et al. Compositional regulation
距离;(2)虽然人们对 MOFs 光催化还原 CO 2 的机 and modification of the host CdS for efficient photocatalytic
理有了一定程度的认知,但是实际执行条件变化的 hydrogen production: Case study on MoS 2 decorated Co 0.2Cd 0.8S
nanorods[J]. Chemical Engineering Journal, 2019, 378:122139.
多样性,使得多因素影响 MOFs 光催化还原 CO 2 的 [15] BIE C B, ZHU B C, XU F Y, et al. In situ grown monolayer N-doped
规律需要进一步深入探讨;(3)目前利用 MOFs 进 graphene on CdS hollow spheres with seamless contact for
photocatalytic CO 2 reduction[J]. Advanced Materials, 2019, 31(42):
行光催化 CO 2 还原大多是在牺牲剂存在的条件下进 1902868.
行的,不符合绿色化学的原则。由于 MOFs 结构中 [16] AMOS R I J, HEINROTH F, CHAN B, et al. Hydrogen from formic
含有机配体,故有可能在水的氧化过程中实现有机 acid via its selective disproportionation over nanodomain-modified
zeolites[J]. ACS Catalysis, 2015, 5(7): 4353-4362.
配体的氧化。另外,将 CO 2 的还原与一些有机物的 [17] CAI S D (蔡随东), HAN H H (韩红辉), HAN H L (韩红亮). From
氧化进行有效耦合有望成为基于 MOFs 光催化还原 the perspective of industrial catalysis-the future development of
zeolites [J]. China Petroleum and Chemical Industry Standards and
CO 2 的另一发展方向。 Quality (中国石油和化工标准与质量), 2012, 33(12): 21.
[18] HAO L W, SUN L L, SU T, et al. Polyoxometalate-based ionic liquid
参考文献: catalyst with unprecedented activity and selectivity for oxidative
[1] SENEVIRATNE S I, DONAT M G, PITMAN A J, et al. Allowable desulfurization of diesel in [Omim]BF 4[J]. Chemical Engineering
CO 2 emissions based on regional and impact-related climate targets[J]. Journal, 2019, 358: 419-426.
Nature, 2016, 529(7587): 477-483. [19] ZHANG H R, ZHANG Q, ZHANG L, et al. Acidic polymeric ionic
[2] WANG S F, WU Y Z, ZHANG N, et al. A highly permeable graphene liquids based reduced graphene oxide: An efficient and rewriteable
oxide membrane with fast and selective transport nanochannels for catalyst for oxidative desulfurization[J]. Chemical Engineering
efficient carbon capture[J]. Energy & Environmental Science, 2016, Journal, 2018, 334: 285-295.
9(10): 3107-3112. [20] XIONG G, CHEN X L, YOU L X, et al. La-metal-organic framework