Page 55 - 精细化工2020年第2期
P. 55

第 37 卷第 2 期                             精   细   化   工                                  Vol.37, No.2
             202 0 年 2 月                             FINE CHEMICALS                                 Feb.    2020


              功能材料
               石墨烯/SnO /Si@PPy 复合材料的制备及电化学性能
                                    2


                               1
                                                          1
                                                                                    1
                                                                       1
                                                                                                 1*
                      王   珏 ,于   平          1,2 ,付   东 ,张晓臣 ,张伟君 ,阚   侃
                 (1.  黑龙江省科学院  高技术研究院,黑龙江  哈尔滨    150020;2.  牡丹江师范学院  化学化工学院,黑龙
                 江  牡丹江    157011)
                 摘要:以氧化石墨烯和 SnCl 2 为原料,通过微波水热法合成了石墨烯/SnO 2 复合材料(GS),以过硫酸铵为引发
                 剂,通过吡咯在 Si 粉表面原位氧化聚合制备了 Si@PPy(SP)包覆结构,最后通过微波水热组装法制备了石墨
                 烯/SnO 2 /Si@PPy 复合材料(GSSP)。采用 SEM、TEM、XRD、Raman 和 BET 对 GS、SP 和 GSSP 材料的形貌
                 和结构进行表征,并以 GSSP 复合材料为负极组装半电池进行倍率、循环、CV 和 EIS 等电化学性能测试。结果
                 表明,GSSP 复合材料具有优异的倍率性能,在 100 mA/g 电流密度下,放电和充电的平均比容量分别为 948.44
                 和 869.63 mA·h/g。1000 mA/g 电流密度下,经过 400 次循环放电和充电的比容量保持率高达 90.69%和 89.34%。
                 关键词:石墨烯;硅;聚吡咯;负极材料;锂离子电池;功能材料
                 中图分类号:TM912.9      文献标识码:A      文章编号:1003-5214 (2020) 02-0257-08



                                Preparation and electrochemical performance of
                                       graphene/SnO 2/Si@PPy composites


                                                                                    1
                                  1
                                                                                              1*
                                                      1
                                           1,2
                                                                      1
                          Wang Jue , Yu Ping , Fu Dong , Zhang Xiaochen , Zhang Weijun , Kan Kan
                 (1. Institute of Advanced Technology, Heilongjiang Academy of Sciences, Harbin 150020, Heilongjiang, China; 2. College
                 of Chemistry and Chemical Engineering, Mudanjiang Normal University, Mudanjiang 157011, Heilongjiang, China)
                 Abstract: Graphene/SnO 2  (GS) composites were synthesized from graphene oxide and SnCl 2  by microwave
                 hydrothermal  method.  Then,  the  coating  structure  of  Si@PPy  (SP)  was  prepared  by  in  situ  oxidation
                 polymerization of pyrrole on the surface of Si powders in the presence of an initiator amount of ammonium
                 persulfate. Finally, graphene/SnO 2/Si@PPy (GSSP) composites were prepared by microwave hydrothermal
                 assembly method. The morphology and structure of GS, SP and GSSP were characterized by SEM, TEM,
                 XRD, Raman and BET. The  half-cells  were  assembled  with  GSSP  composite  as  anode,  and  the
                 electrochemical properties, such as rate performance, cyclic performance, CV and EIS, were tested. The
                 results showed that the GSSP composite had excellent rate performance. At a current density of 100 mA/g,
                 the average specific capacity of discharge and charge was 948.44 and 869.63 mA·h/g, respectively. After
                 400  cycles  under  a  current  density of  1000 mA/g, the specific  capacity  retention  rate  of  discharge  and
                 charge was up to 90.69% and 89.34%.
                 Key words: graphene; silicon; polypyrrole; anode material; lithium ion battery; functional materials


                 锂离子电池石墨负极的理论容量低,仅为                            池发展的关键因素。Si 具有 4200  mA·h/g 的理论比
            372 mA·h/g,限制了数码产品的换代升级,以及新                        容量,是下一代锂电池的理想负极材料                  [1-2] 。目前,
            能源汽车等领域的发展。传统提高锂离子电池容量                             Si 作为负极材料还存在以下问题:第一,Si 的电导
                                                                                                 [3]
            的方法主要是串联电池包,但是这种方法会增加电                             率较低,很难单独作为负极材料应用 ;第二,Si
                                                                                              [4]
            池的体积和重量。提高电芯容量密度才是锂离子电                             的活性较差,较难与其他材料反应 ;第三,Si 在

                 收稿日期:2019-06-10;  定用日期:2019-07-30; DOI: 10.13550/j.jxhg.20190523
                 基金项目:黑龙江省自然科学基金联合引导项目(LH2019B030);黑龙江省院所基本应用技术研究专项(ZNBZ2017GJS04)
                 作者简介:王   珏(1987—),男,助理研究员,博士生,E-mail:wangjue122@126.com。联系人:阚   侃(1984—),女,副研究员,
                 博士,E-mail:kankan.has@foxmail.com。
   50   51   52   53   54   55   56   57   58   59   60