Page 128 - 《精细化工》2020年第3期
P. 128

·546·                             精细化工   FINE CHEMICALS                                  第 37 卷

            载量为 15%时,即 15%  CeO 2 /Cu 0.2 Co 0.8 O δ 具有较大      [16]  XU X J, FU Q, GUO X G, et al. A highly active“NiO-on-Au”surface
                                                                   architecture for CO oxidation[J]. ACS Catalysis, 2013, 3(8): 1810-1818.
            的比表面积和孔容积、较高的 Ce 物种分散度、较多
                                                               [17]  JOSE A, PING L, JESUS G, et al. Inverse oxide/metal catalysts in
                                                        3+
                                                  +
            的两相接触界面、较多的氧空穴、较多的 Cu 和 Co ,                           fundamental  studies  and  practical  applications:  A  perspective  of
            故其具有良好的 CO 催化氧化性能。在常压下,15%                             recent developments[J]. Joural of Physical Chemistry Letters, 2016,
                                                                   7(13): 2627-2639.
            CeO 2 /Cu 0.2 Co 0.8 O δ 催化剂上的 CO 完全转化温度低          [18]  ZENG S H, WANG Y, DING S P, et al. Active sites over CuO/CeO 2
            至 75  ℃。CO 在 15% CeO 2 /Cu 0.2 Co 0.8 O δ 催化剂两相        and  inverse  CeO 2/CuO  catalysts  for  preferential  CO  oxidation[J].
            界面处氧化的机理有待进一步研究。                                       Journal of Power Sources, 2014, 256: 301-311.
                                                               [19]  FAN  Y,  JESUS  G,  JAIME  E,  et al.  CO  Oxidation  on  inverse
                                                                   CeO x/Cu(111)  catalysts:  High  catalytic  activity  and  ceria-promoted
            参考文献:                                                  dissociation  of  O 2[J].  Joural  of  the  American  Chemistry  Society,
            [1]   MA Jing (马晶), XIA Xianzhi (夏先知), ZHANG Tianyi (张天一), et   2011, 133(10): 3444-3451.
                 al.  Effect  of  trace  impurifies  on  propylene  polymerization[J].   [20]  GAO Z M, ZHOU M, DENG H, et al. Preferential oxidation of CO in
                 Petrochemical Technology (石油化工), 2013, 42(7): 767-770.   excess H 2 over CeO 2/CuO catalyst: Effect of calcination temperature[J].
            [2]   JUAN  M,  NICOLÁS  C,  EDUARDO  E,  et al.  HKUST-1  MOF:  A   Jorunal of Natural Gas Chemistry, 2012, 21(5): 513-518.
                 matrix to synthesize CuO and CuO-CeO 2 nanoparticle catalysts for   [21]  ZENG S H, WANG Y, LIU K W, et al. CeO 2 nanoparticles supported
                 CO oxidation[J]. Chemical Engineering Journal, 2012, 196: 180-187.   on  CuO  with  petal-like  and  sphere-flower  morphologies  for
            [3]   QI L,  YU Q,  DAI Y,  et al.  Influence  of  cerium  precursors  on  the   preferential  CO  oxidation[J].  International  Journal  of  Hydrogen
                 structure and reducibility of mesoporous CuO-CeO 2 catalysts for CO   Energy, 2012, 37(16): 11640-11649.
                 oxidation[J]. Applied Catalysis B: Environmental, 2012, 120: 308-320.   [22]  ZENG S H, WANG Q, WANG Y, et al. CeO 2-Co 3O 4/CuO catalysts
            [4]   YAO S Y, MUDIYANSELAGE K, XU W Q, et al. Unraveling the   with chrysanthemum-like morphology for preferential CO oxidation[J].
                 dynamic  nature  of  a  CuO/CeO 2  catalyst  for  CO  oxidation  in   Jorunal of Nanoscience and Nanotechnology, 2016, 16(1): 962-965.
                 operando:  A  combined  study  of  XANES  (Fluorescence)  and   [23]  ZHANG Wenli (张文丽), LIU Na (刘娜), DING Suping (丁素萍), et
                 DRIFTS[J]. ACS Catalysis, 2014, 4(6): 1650-1661.   al.  Study  on  catalytic  performance  of  CeO 2/CuO  catalysts  for
            [5]   CECILIA  J  A,  ARANGO-DIAZ  A,  FRANCO  F,  et al. CuO-CeO 2   preferential  CO  oxidation[J].  Chemical  Industry  and  Engineering
                 supported  on  montmorillonite-derived  porous  clay  heterostructures   Progress (化工进展), 2011, 30(8): 1744-1748.
                 (PCH) for preferential CO oxidation in H 2-rich stream[J]. Catalysis   [24]  SONG  C  X,  ZHAO  Z  Y,  LI  H  H,  et al.  CeO 2 decorated CuO
                 Today, 2015, 253: 126-136.                        hierarchical composites as inverse catalyst for enhanced CO oxidation[J].
            [6]   SHAO J J, ZHU X, ZHANG Y K, et al. In situ FTIR study on CO   The Royal Society of Chemistry, 2016, 6(105): 102931-102937.
                 oxidation over Co 3O 4/CeO 2 catalyst[J]. Catalysis Letters, 2008, 123   [25]  ZENG S H, LIU K W, CHEN T J, et al. Influence of crystallite size
                 (3): 32-36.                                       and  interface  on  the  catalytic  performance  over  the  CeO 2/CuO
            [7]   JIA  A  P, JIANG S Y,  LU J  Q,  et al.  Study  of  catalytic  activity  at   catalysts[J]. International Journal of Hydrogen Energy, 2013, 38(34):
                 CuO-CeO 2  interface  for  CO  oxidation[J].  Journal  of  Physical   14542-14549.
                 Chemistry C, 2010, 114: 21605-21610.          [26]  ANTONIO L, ANNA K, ZOLTÁN S, et al. Influence of calcination
            [8]   HORNÉS  A,  HUNGRÍA  A  B,  BERA  P,  et al.  Inverse  CeO 2/CuO   temperature  and  atmosphere  preparation  parameters  on  CO-PROX
                 catalyst  as  an  alternative  to  classical  direct  configurations  for   activity  of  catalysts  based  on  CeO 2/CuO  inverse  configurations[J].
                 preferential oxidation of CO in hydrogen-rich stream[J]. Journal of   Journal of Power Sources, 2011, 196(9): 4364-4369.
                 the American Chemical Society, 2010, 132(1): 34-35.   [27]  ZENG  S  H,  ZHANG  W  L,  LIU  N.  Inverse  CeO 2/CuO  catalysts
            [9]   CHEN S Q, LI L P, HU W B, et al. Anchoring high-concentration   prepared by hydrothermal  method for preferential CO oxidation[J].
                 oxygen  vacancies  at  interfaces  of  CeO 2–x/Cu  toward  enhanced   Catalysis Letters, 2013, 143: 1018-1024.
                 activity  for  preferential  CO  oxidation[J].  Applied  Materials  &   [28]  SAMI  B,  HASSOUNA  D,  SALAH  K,  et al.  Structural  and  optical
                 Interfaces, 2015, 7(41): 22999-23007.             proprieties of doped cobalt oxide: Cu xCo 3–xO 4(x = 0.0; 0.1; 0.2; 0.4;
            [10]  ZENG  S  H,  WANG  Y,  QIN  B,  et al.  Inverse  CeO 2/CuO  catalysts   and 0.6)[J]. Optik, 2015, 126(9): 1047-1051.
                 prepared  by  different  precipitants  for  preferential  CO  oxidation  in   [29]  TANG C W, KUO C C, KUO M C, et al. Influence of pretreatment
                 hydrogen-rich  streams[J].  Catalysis  Science  &  Technology,  2013,   conditions on low-temperature carbon monoxide oxidation over CeO 2/
                 3(12): 3163-3172.                                 Co 3O 4 catalysts[J]. Applied Catalysis A: General, 2006, 309(1): 37-43.
            [11]  BARRIO L, ESTRELLA M, ZHOU G, et al. Unraveling the active   [30]  WANG C L, WANG D D, YANG Y, et al. Enhanced CO oxidation on
                 site in copper-ceria systems for the water-gas shift reaction: In situ   CeO 2/Co 3O 4 nanojunctions derived from annealing of metal organic
                 characterization  of  an  inverse  powder  CeO 2–x/CuO-Cu  catalyst[J].   frameworks[J]. Nanoscale, 2016, 8(47): 19761-19768.
                 Journal of Physical Chemistry C, 2010, 114(8): 3580-3587.   [31]  SU Y, WANG S P, ZHANG T Y, et al. Comparative study on catalytic
            [12]  SANJAYA  D  S,  DARIO  S,  JOSE  A.  Unique  properties  of  ceria   performances  for  low-temperature  CO  oxidation  of  Cu-Ce-O  and
                 nanoparticles  supported  on  metals:  Novel  inverse  ceria/copper   Cu-Co-Ce-O catalysts[J]. Catalysis Letters, 2008, 124: 405-412.
                 catalysts  for  CO  oxidation  and  the  water-gas  shift  reaction[J].   [32]  LIU Zikui (刘子魁), LU Xiaolin (卢小林), BAI Xue (白雪). Effects
                 Accounts of Chemical Research, 2013, 46(8): 1702-1711.   of CuO on the perforemance of Co 3O 4-CeO 2 catalysts for preferential
            [13]  JESÚS G, KUMUDU M, FANG X, et al. Highly active copper-ceria   oxidation of CO under H 2-rich gases[J]. Industrial Catalysis (工业催
                 and  copper-ceria-titania  catalysts  for  methanol  synthesis  from   化), 2017, 25(1): 25-30.
                 CO 2[J]. Science, 2014, 345(345): 546-550.    [33]  GU Huijie (顾慧劼), YE Liping (叶丽萍), HUANG Jinhua (黄金花),
            [14]  SANJAYA  D  S,  IRADWIKANARI  W,  PEDRO  J,  et al.   et al. CuO/Cu 0.6Ce 0.4O x catalysts for deep removal of trace amount of
                 Hydrogenation of CO 2 to methanol on CeO x/Cu(111) and ZnO/Cu(111)   CO  in  propylene  at  low  temperature[J].  Petrochemical  Technology
                                                         3+
                 catalysts: Role of the metal-oxide interface and importance of Ce    (石油化工), 2015, 44(5): 565-570.
                 sites[J]. Journal of Physical Chemistry C, 2016, 120(3): 1778-1784.   [34]  LIU Yujuan (刘玉娟), WANG Dongzhe (王东哲), ZHANG Lei (张
            [15]  FU Q, YANG F, BAO X H. Interface-confined oxide nanostructures   磊), et al. Effect of CeO 2 morphology on the performance of CuO/
                 for catalytic oxidation reactions[J]. Accounts of Chemical Research,   CeO 2 catalysts for methanol steam reforming[J]. Fine Chemicals (精
                 2013, 46(8): 1692-1701.                           细化工), 2018, 35(12): 2045-2086.
   123   124   125   126   127   128   129   130   131   132   133