Page 128 - 《精细化工》2020年第3期
P. 128
·546· 精细化工 FINE CHEMICALS 第 37 卷
载量为 15%时,即 15% CeO 2 /Cu 0.2 Co 0.8 O δ 具有较大 [16] XU X J, FU Q, GUO X G, et al. A highly active“NiO-on-Au”surface
architecture for CO oxidation[J]. ACS Catalysis, 2013, 3(8): 1810-1818.
的比表面积和孔容积、较高的 Ce 物种分散度、较多
[17] JOSE A, PING L, JESUS G, et al. Inverse oxide/metal catalysts in
3+
+
的两相接触界面、较多的氧空穴、较多的 Cu 和 Co , fundamental studies and practical applications: A perspective of
故其具有良好的 CO 催化氧化性能。在常压下,15% recent developments[J]. Joural of Physical Chemistry Letters, 2016,
7(13): 2627-2639.
CeO 2 /Cu 0.2 Co 0.8 O δ 催化剂上的 CO 完全转化温度低 [18] ZENG S H, WANG Y, DING S P, et al. Active sites over CuO/CeO 2
至 75 ℃。CO 在 15% CeO 2 /Cu 0.2 Co 0.8 O δ 催化剂两相 and inverse CeO 2/CuO catalysts for preferential CO oxidation[J].
界面处氧化的机理有待进一步研究。 Journal of Power Sources, 2014, 256: 301-311.
[19] FAN Y, JESUS G, JAIME E, et al. CO Oxidation on inverse
CeO x/Cu(111) catalysts: High catalytic activity and ceria-promoted
参考文献: dissociation of O 2[J]. Joural of the American Chemistry Society,
[1] MA Jing (马晶), XIA Xianzhi (夏先知), ZHANG Tianyi (张天一), et 2011, 133(10): 3444-3451.
al. Effect of trace impurifies on propylene polymerization[J]. [20] GAO Z M, ZHOU M, DENG H, et al. Preferential oxidation of CO in
Petrochemical Technology (石油化工), 2013, 42(7): 767-770. excess H 2 over CeO 2/CuO catalyst: Effect of calcination temperature[J].
[2] JUAN M, NICOLÁS C, EDUARDO E, et al. HKUST-1 MOF: A Jorunal of Natural Gas Chemistry, 2012, 21(5): 513-518.
matrix to synthesize CuO and CuO-CeO 2 nanoparticle catalysts for [21] ZENG S H, WANG Y, LIU K W, et al. CeO 2 nanoparticles supported
CO oxidation[J]. Chemical Engineering Journal, 2012, 196: 180-187. on CuO with petal-like and sphere-flower morphologies for
[3] QI L, YU Q, DAI Y, et al. Influence of cerium precursors on the preferential CO oxidation[J]. International Journal of Hydrogen
structure and reducibility of mesoporous CuO-CeO 2 catalysts for CO Energy, 2012, 37(16): 11640-11649.
oxidation[J]. Applied Catalysis B: Environmental, 2012, 120: 308-320. [22] ZENG S H, WANG Q, WANG Y, et al. CeO 2-Co 3O 4/CuO catalysts
[4] YAO S Y, MUDIYANSELAGE K, XU W Q, et al. Unraveling the with chrysanthemum-like morphology for preferential CO oxidation[J].
dynamic nature of a CuO/CeO 2 catalyst for CO oxidation in Jorunal of Nanoscience and Nanotechnology, 2016, 16(1): 962-965.
operando: A combined study of XANES (Fluorescence) and [23] ZHANG Wenli (张文丽), LIU Na (刘娜), DING Suping (丁素萍), et
DRIFTS[J]. ACS Catalysis, 2014, 4(6): 1650-1661. al. Study on catalytic performance of CeO 2/CuO catalysts for
[5] CECILIA J A, ARANGO-DIAZ A, FRANCO F, et al. CuO-CeO 2 preferential CO oxidation[J]. Chemical Industry and Engineering
supported on montmorillonite-derived porous clay heterostructures Progress (化工进展), 2011, 30(8): 1744-1748.
(PCH) for preferential CO oxidation in H 2-rich stream[J]. Catalysis [24] SONG C X, ZHAO Z Y, LI H H, et al. CeO 2 decorated CuO
Today, 2015, 253: 126-136. hierarchical composites as inverse catalyst for enhanced CO oxidation[J].
[6] SHAO J J, ZHU X, ZHANG Y K, et al. In situ FTIR study on CO The Royal Society of Chemistry, 2016, 6(105): 102931-102937.
oxidation over Co 3O 4/CeO 2 catalyst[J]. Catalysis Letters, 2008, 123 [25] ZENG S H, LIU K W, CHEN T J, et al. Influence of crystallite size
(3): 32-36. and interface on the catalytic performance over the CeO 2/CuO
[7] JIA A P, JIANG S Y, LU J Q, et al. Study of catalytic activity at catalysts[J]. International Journal of Hydrogen Energy, 2013, 38(34):
CuO-CeO 2 interface for CO oxidation[J]. Journal of Physical 14542-14549.
Chemistry C, 2010, 114: 21605-21610. [26] ANTONIO L, ANNA K, ZOLTÁN S, et al. Influence of calcination
[8] HORNÉS A, HUNGRÍA A B, BERA P, et al. Inverse CeO 2/CuO temperature and atmosphere preparation parameters on CO-PROX
catalyst as an alternative to classical direct configurations for activity of catalysts based on CeO 2/CuO inverse configurations[J].
preferential oxidation of CO in hydrogen-rich stream[J]. Journal of Journal of Power Sources, 2011, 196(9): 4364-4369.
the American Chemical Society, 2010, 132(1): 34-35. [27] ZENG S H, ZHANG W L, LIU N. Inverse CeO 2/CuO catalysts
[9] CHEN S Q, LI L P, HU W B, et al. Anchoring high-concentration prepared by hydrothermal method for preferential CO oxidation[J].
oxygen vacancies at interfaces of CeO 2–x/Cu toward enhanced Catalysis Letters, 2013, 143: 1018-1024.
activity for preferential CO oxidation[J]. Applied Materials & [28] SAMI B, HASSOUNA D, SALAH K, et al. Structural and optical
Interfaces, 2015, 7(41): 22999-23007. proprieties of doped cobalt oxide: Cu xCo 3–xO 4(x = 0.0; 0.1; 0.2; 0.4;
[10] ZENG S H, WANG Y, QIN B, et al. Inverse CeO 2/CuO catalysts and 0.6)[J]. Optik, 2015, 126(9): 1047-1051.
prepared by different precipitants for preferential CO oxidation in [29] TANG C W, KUO C C, KUO M C, et al. Influence of pretreatment
hydrogen-rich streams[J]. Catalysis Science & Technology, 2013, conditions on low-temperature carbon monoxide oxidation over CeO 2/
3(12): 3163-3172. Co 3O 4 catalysts[J]. Applied Catalysis A: General, 2006, 309(1): 37-43.
[11] BARRIO L, ESTRELLA M, ZHOU G, et al. Unraveling the active [30] WANG C L, WANG D D, YANG Y, et al. Enhanced CO oxidation on
site in copper-ceria systems for the water-gas shift reaction: In situ CeO 2/Co 3O 4 nanojunctions derived from annealing of metal organic
characterization of an inverse powder CeO 2–x/CuO-Cu catalyst[J]. frameworks[J]. Nanoscale, 2016, 8(47): 19761-19768.
Journal of Physical Chemistry C, 2010, 114(8): 3580-3587. [31] SU Y, WANG S P, ZHANG T Y, et al. Comparative study on catalytic
[12] SANJAYA D S, DARIO S, JOSE A. Unique properties of ceria performances for low-temperature CO oxidation of Cu-Ce-O and
nanoparticles supported on metals: Novel inverse ceria/copper Cu-Co-Ce-O catalysts[J]. Catalysis Letters, 2008, 124: 405-412.
catalysts for CO oxidation and the water-gas shift reaction[J]. [32] LIU Zikui (刘子魁), LU Xiaolin (卢小林), BAI Xue (白雪). Effects
Accounts of Chemical Research, 2013, 46(8): 1702-1711. of CuO on the perforemance of Co 3O 4-CeO 2 catalysts for preferential
[13] JESÚS G, KUMUDU M, FANG X, et al. Highly active copper-ceria oxidation of CO under H 2-rich gases[J]. Industrial Catalysis (工业催
and copper-ceria-titania catalysts for methanol synthesis from 化), 2017, 25(1): 25-30.
CO 2[J]. Science, 2014, 345(345): 546-550. [33] GU Huijie (顾慧劼), YE Liping (叶丽萍), HUANG Jinhua (黄金花),
[14] SANJAYA D S, IRADWIKANARI W, PEDRO J, et al. et al. CuO/Cu 0.6Ce 0.4O x catalysts for deep removal of trace amount of
Hydrogenation of CO 2 to methanol on CeO x/Cu(111) and ZnO/Cu(111) CO in propylene at low temperature[J]. Petrochemical Technology
3+
catalysts: Role of the metal-oxide interface and importance of Ce (石油化工), 2015, 44(5): 565-570.
sites[J]. Journal of Physical Chemistry C, 2016, 120(3): 1778-1784. [34] LIU Yujuan (刘玉娟), WANG Dongzhe (王东哲), ZHANG Lei (张
[15] FU Q, YANG F, BAO X H. Interface-confined oxide nanostructures 磊), et al. Effect of CeO 2 morphology on the performance of CuO/
for catalytic oxidation reactions[J]. Accounts of Chemical Research, CeO 2 catalysts for methanol steam reforming[J]. Fine Chemicals (精
2013, 46(8): 1692-1701. 细化工), 2018, 35(12): 2045-2086.