Page 158 - 《精细化工》2020年第4期
P. 158

·792·                             精细化工   FINE CHEMICALS                                 第 37 卷

            镀的方式制备 OLED 器件时存在的有机发光层铱配                              Precision Engineering, 2015, 23(4): 926-933.
            合物利用率低的问题。                                         [12]  LIU X Y, TANG X, ZHAO Y, et al. Dispiro and propellane: Novel
                                                                   molecular platforms for highly efficient organic light-emitting diodes
                                                                   [J]. ACS Appl Mater Interfaces, 2017, 10(2): 1925-1932.
            参考文献:                                              [13]  CHEN L A, XU W, HUANG B, et al. Asymmetric catalysis with an
            [1]   DATA  P,  KUROWSKA  A,  PLUCZYK  S,  et al.  Exciplex   inert  chiral-at-metal  iridium  complex[J].  Journal  of  the  American
                 enhancement  as  a  tool  to  increase  OLED  device  efficiency[J].  The   Chemical Society, 2013, 135(29): 10598-10601.
                 Journal of Physical Chemistry C, 2016, 120(4): 2070-2078.     [14]  CHEN M, YANG J, YE Z, et al. Extremely low-efficiency roll-off of
            [2]   YANG X, XU X, ZHOU G. Recent advances of the emitters for high   phosphorescent  organic  light-emitting  diodes  at  high  brightness
                 performance  deep-blue  organic  light-emitting  diodes[J].  Journal of   based  on  acridine  heterocyclic  derivatives[J].  Journal  of  Materials
                 Materials Chemistry C, 2015, 3(5): 913-944.       Chemistry C, 2018, 6(36): 9713-9722.
            [3]   HUNG  W  Y,  CHIANG  P  Y,  LIN  S  W,  et al.  Balance  the  carrier   [15]  KOZHEVNIKOV  V  N,  ZHENG  Y,  CLOUGH  M,  et al.
                 mobility  to  achieve  high  performance  exciplex  OLED  using  a   Cyclometalated  Ir( Ⅲ )  complexes  for  high-efficiency  solution-
                 triazine-based  acceptor[J].  ACS  Appl  Mater  Interfaces,  2016,  8(7):   processable blue PhOLEDs[J]. Chemistry of Materials, 2013, 25(11):
                 4811-4818.                                        2352-2358.
            [4]   XIAO L, CHEN Z, QU B, et al. Recent progresses on materials for   [16]  SHAVALEEV  N  M,  MONTI  F,  COSTA  R  D,  et al.  Bright  blue
                 electrophosphorescent  organic  light-emitting  devices[J].  Advanced   phosphorescence  from  cationic  bis-cyclometalated  iridium( Ⅲ )
                 Materials, 2015, 23(8): 926-952.                  isocyanide  complexes[J].  Inorganic  Chemistry,  2012,  51(4):  2263-
            [5]   LI G, FLEETHAM T, LI J. Efficient and stable white organic light-   2271.
                 emitting diodes employing a single emitter[J]. Advanced Materials,   [17]  CAIXIAN  Y,  YAN  L,  QIAOWEN  C,  et al.  Batch  synthesis,
                 2014, 26(18): 2931-2936.                          characterization and light-physical properties of bis (2-phenylpyridine)
            [6]   FAN C, YANG C. Yellow/orange emissive heavy-metal complexes as   (acetylacetonate)  iridium(Ⅲ)[J].  Chinese  Journal  of  Rare  Metals,
                 phosphors  in  monochromatic  and  white  organic  light-emitting   2015, 39(2): 144- 151.
                 devices[J]. Chemical Society Reviews, 2014, 43(17): 6439-6469.     [18]  Liu Z, Bian Z, Huang C. Luminescent iridium complexes and their
            [7]   CHI  Y,  CHOU  P  T.  ChemInform  abstract:  Transition-metal   applications[J].  Topics  in  Organometallic  Chemistry,  2010,  28:
                 phosphors  with  cyclometalating  ligands:  Fundamentals  and   113-142.
                 applications[J]. Cheminform, 2010, 39(2): 638-655.     [19]  CHEN Yanfang (陈艳芳), LUO Kaijun (骆开均), S Shenwei (苏神
            [8]   HU  Y,  YUAN  Y,  SHI  Y  L,  et al.  Efficient  near-infrared  organic   伟).  Iridium(Ⅲ)  complexes  with  5-substitute-8-quinolinolates  and
                 light-emitting diodes based on a bipolar host[J]. Journal of Materials   2-phenylpyridine  as  ligands:  Synthesis,  characterization  and
                 Chemistry C, 2018, 6(6): 1407-1412.               photoluminescent  as  well  as  electroluminescent  properties[J].
            [9]   ZHANG X, JACQUEMIN D, PENG Q, et al. General approach to   Sciental Sinica Chimica (中国科学:  化学), 2013, 43(7): 848-857.
                 compute  phosphorescent  OLED  efficiency[J].  Journal  of  Physical   [20]  JING yiming (荆一铭). Study on synthesis and photoelectric properties
                 Chemistry C, 2018, 122(11): 6340-6347.            of several iridium complexes[D]. Nanjing: Nanjing University (南京
            [10]  QING L U, CHEN B Y, YANG W Q, et al. Improved efficiency and   大学), 2017.
                 its roll-off of organic light-emitting diodes with double electron transport   [21]  CHANG  Yongzheng  (常永正).  Organic  semiconductor  materials
                 layers[J]. Chinese Journal of Luminescence, 2015, 36(9): 1053-1058.     constructed by friedel-crafts reaction catalyzed by boron trifluoride
            [11]  ZHENG F,  LIU  L  Y, LIU X  X,  et al.  Control  of  correlated  color   ether and their photoelectric properties[D]. Nanjing: Nanjing University
                 temperature for multi-primary  color LED illumination[J]. Optics &   of Posts and Telecommunications(南京邮电大学), 2011.


            (上接第 784 页)                                            multifunctional platform for synergistic targeted chemo-photothermal
                                                                   therapy[J]. Chemical Engineering Journal, 2018, 342: 90-102.
            [8]   WANG X J, TIAN J F, YANG T Z, et al. Single crystalline boron   [15]  CHENG L, WANG C, FENG L Z, et al. Functional nanomaterials for
                 nanocones:  Electric  transport  and  field  emission  properties[J].   phototherapies of cancer functional nanomaterials for phototherapies
                 Advanced Materials, 2007, 19(24): 4480-4485.      of cancer[J]. Chemical Reviews, 2014, 114(21): 10869-10939.
            [9]   MANNIX  A  J,  ZHOU  X  F,  KIRALY  B,  et al.  Synthesis  of   [16]  WU  J  R,  BREMNER  D  H,  NIU  S  W,  et al.  Chemodrug-gated
                 borophenes:  Anisotropic,  two-dimensional  boron  polymorphs[J].   biodegradable  hollow  mesoporousorganosilicanano-theranostics  for
                 Science, 2015, 350(6267): 1513-1516.              multimodal  Imaging-guided  low  temperature  photothermaltherapy/
            [10]  YANG K, FENG L Z, SHI X Z, et al. Nano-graphene in biomedicine:   chemo-therapy  of  cancer[J].  ACS  Applied  Materials  &  Interfaces,
                 Theranostic applications[J]. Chemical Society Reviews, 2013, 42(2):   2018, 10(49): 42115-42126.
                 530-547.                                      [17]  JI X Y, KONG N, WANG J Q, et al. A novel top-down synthesis of
            [11]  SHAO  J  D,  XIE  H  H,  HUANG  H,  et al.  Biodegradable  black   ultrathin 2D boron nanosheets for multimodal imaging-guided cancer
                 phosphorus-based  nanospheres  for  in vivo  photothermal  cancer   therapy[J].  Advanced  Materials,  2018,  30(36):  1803031.  DOI:
                 therapy[J].  Nature  Communications,  2016,  7:  12967.  DOI:  10.   10.1002/adma.20180303.
                 1038/ncomms12967.                             [18]  LV  R,  YANG  P,  HE  F,  et al.  An  imaging-guided  platform  for
            [12]  CHEN W H, LUO G F, LEI Q, et al. Overcoming the heat endurance   synergistic  photodynamic/photothermal/chemo-therapy  with  pH/
                 of tumor cells by interfering the anaerobic glycolysis metabolism for   temperature-responsive  drug  release[J].  Biomaterials,  2015,  63:
                 improved  photothermal  therapy[J].  Acs  Nano,  2017,  11(2):  1419-   115-127.
                 1431.                                         [19]  TAO W, ZHU X B, YU X H, et al. Black phosphorus nanosheets as a
            [13]  CHEN  W  S,  OUYANG  J,  LIU  H,  et al.  Black  phosphorus   robust  delivery  platform  for  cancer  theranostics[J].  Advanced
                 nanosheet-based drug delivery system for synergistic photodynamic/   Materials, 2017, 29(1): 1603276. DOI: 10.1002/adma.201603276.
                 photothermal/chemotherapy of cancer[J]. Advanced Materials, 2017,   [20]  LIU Y L, JI X Y, LIU J H, et al. Tantalum sulfide nanosheets as a
                 29(5): 641-647.                                   theranostic nanoplatform for computed tomography imaging-guided
                                                                   combinatorial chemo-photothermal therapy[J]. Advanced Functional
            [14]  WU  J  R,  BREMNER  D  H,  NIU  S  W,  et al.  Functionalized  MoS 2
                 nanosheet-capped  periodic  mesoporous  organosilicas  as  a   Materials, 2017, 27(39): 1703261. DOI: 10.1002/adfm.201703026.
   153   154   155   156   157   158   159   160   161   162   163