Page 158 - 《精细化工》2020年第4期
P. 158
·792· 精细化工 FINE CHEMICALS 第 37 卷
镀的方式制备 OLED 器件时存在的有机发光层铱配 Precision Engineering, 2015, 23(4): 926-933.
合物利用率低的问题。 [12] LIU X Y, TANG X, ZHAO Y, et al. Dispiro and propellane: Novel
molecular platforms for highly efficient organic light-emitting diodes
[J]. ACS Appl Mater Interfaces, 2017, 10(2): 1925-1932.
参考文献: [13] CHEN L A, XU W, HUANG B, et al. Asymmetric catalysis with an
[1] DATA P, KUROWSKA A, PLUCZYK S, et al. Exciplex inert chiral-at-metal iridium complex[J]. Journal of the American
enhancement as a tool to increase OLED device efficiency[J]. The Chemical Society, 2013, 135(29): 10598-10601.
Journal of Physical Chemistry C, 2016, 120(4): 2070-2078. [14] CHEN M, YANG J, YE Z, et al. Extremely low-efficiency roll-off of
[2] YANG X, XU X, ZHOU G. Recent advances of the emitters for high phosphorescent organic light-emitting diodes at high brightness
performance deep-blue organic light-emitting diodes[J]. Journal of based on acridine heterocyclic derivatives[J]. Journal of Materials
Materials Chemistry C, 2015, 3(5): 913-944. Chemistry C, 2018, 6(36): 9713-9722.
[3] HUNG W Y, CHIANG P Y, LIN S W, et al. Balance the carrier [15] KOZHEVNIKOV V N, ZHENG Y, CLOUGH M, et al.
mobility to achieve high performance exciplex OLED using a Cyclometalated Ir( Ⅲ ) complexes for high-efficiency solution-
triazine-based acceptor[J]. ACS Appl Mater Interfaces, 2016, 8(7): processable blue PhOLEDs[J]. Chemistry of Materials, 2013, 25(11):
4811-4818. 2352-2358.
[4] XIAO L, CHEN Z, QU B, et al. Recent progresses on materials for [16] SHAVALEEV N M, MONTI F, COSTA R D, et al. Bright blue
electrophosphorescent organic light-emitting devices[J]. Advanced phosphorescence from cationic bis-cyclometalated iridium( Ⅲ )
Materials, 2015, 23(8): 926-952. isocyanide complexes[J]. Inorganic Chemistry, 2012, 51(4): 2263-
[5] LI G, FLEETHAM T, LI J. Efficient and stable white organic light- 2271.
emitting diodes employing a single emitter[J]. Advanced Materials, [17] CAIXIAN Y, YAN L, QIAOWEN C, et al. Batch synthesis,
2014, 26(18): 2931-2936. characterization and light-physical properties of bis (2-phenylpyridine)
[6] FAN C, YANG C. Yellow/orange emissive heavy-metal complexes as (acetylacetonate) iridium(Ⅲ)[J]. Chinese Journal of Rare Metals,
phosphors in monochromatic and white organic light-emitting 2015, 39(2): 144- 151.
devices[J]. Chemical Society Reviews, 2014, 43(17): 6439-6469. [18] Liu Z, Bian Z, Huang C. Luminescent iridium complexes and their
[7] CHI Y, CHOU P T. ChemInform abstract: Transition-metal applications[J]. Topics in Organometallic Chemistry, 2010, 28:
phosphors with cyclometalating ligands: Fundamentals and 113-142.
applications[J]. Cheminform, 2010, 39(2): 638-655. [19] CHEN Yanfang (陈艳芳), LUO Kaijun (骆开均), S Shenwei (苏神
[8] HU Y, YUAN Y, SHI Y L, et al. Efficient near-infrared organic 伟). Iridium(Ⅲ) complexes with 5-substitute-8-quinolinolates and
light-emitting diodes based on a bipolar host[J]. Journal of Materials 2-phenylpyridine as ligands: Synthesis, characterization and
Chemistry C, 2018, 6(6): 1407-1412. photoluminescent as well as electroluminescent properties[J].
[9] ZHANG X, JACQUEMIN D, PENG Q, et al. General approach to Sciental Sinica Chimica (中国科学: 化学), 2013, 43(7): 848-857.
compute phosphorescent OLED efficiency[J]. Journal of Physical [20] JING yiming (荆一铭). Study on synthesis and photoelectric properties
Chemistry C, 2018, 122(11): 6340-6347. of several iridium complexes[D]. Nanjing: Nanjing University (南京
[10] QING L U, CHEN B Y, YANG W Q, et al. Improved efficiency and 大学), 2017.
its roll-off of organic light-emitting diodes with double electron transport [21] CHANG Yongzheng (常永正). Organic semiconductor materials
layers[J]. Chinese Journal of Luminescence, 2015, 36(9): 1053-1058. constructed by friedel-crafts reaction catalyzed by boron trifluoride
[11] ZHENG F, LIU L Y, LIU X X, et al. Control of correlated color ether and their photoelectric properties[D]. Nanjing: Nanjing University
temperature for multi-primary color LED illumination[J]. Optics & of Posts and Telecommunications(南京邮电大学), 2011.
(上接第 784 页) multifunctional platform for synergistic targeted chemo-photothermal
therapy[J]. Chemical Engineering Journal, 2018, 342: 90-102.
[8] WANG X J, TIAN J F, YANG T Z, et al. Single crystalline boron [15] CHENG L, WANG C, FENG L Z, et al. Functional nanomaterials for
nanocones: Electric transport and field emission properties[J]. phototherapies of cancer functional nanomaterials for phototherapies
Advanced Materials, 2007, 19(24): 4480-4485. of cancer[J]. Chemical Reviews, 2014, 114(21): 10869-10939.
[9] MANNIX A J, ZHOU X F, KIRALY B, et al. Synthesis of [16] WU J R, BREMNER D H, NIU S W, et al. Chemodrug-gated
borophenes: Anisotropic, two-dimensional boron polymorphs[J]. biodegradable hollow mesoporousorganosilicanano-theranostics for
Science, 2015, 350(6267): 1513-1516. multimodal Imaging-guided low temperature photothermaltherapy/
[10] YANG K, FENG L Z, SHI X Z, et al. Nano-graphene in biomedicine: chemo-therapy of cancer[J]. ACS Applied Materials & Interfaces,
Theranostic applications[J]. Chemical Society Reviews, 2013, 42(2): 2018, 10(49): 42115-42126.
530-547. [17] JI X Y, KONG N, WANG J Q, et al. A novel top-down synthesis of
[11] SHAO J D, XIE H H, HUANG H, et al. Biodegradable black ultrathin 2D boron nanosheets for multimodal imaging-guided cancer
phosphorus-based nanospheres for in vivo photothermal cancer therapy[J]. Advanced Materials, 2018, 30(36): 1803031. DOI:
therapy[J]. Nature Communications, 2016, 7: 12967. DOI: 10. 10.1002/adma.20180303.
1038/ncomms12967. [18] LV R, YANG P, HE F, et al. An imaging-guided platform for
[12] CHEN W H, LUO G F, LEI Q, et al. Overcoming the heat endurance synergistic photodynamic/photothermal/chemo-therapy with pH/
of tumor cells by interfering the anaerobic glycolysis metabolism for temperature-responsive drug release[J]. Biomaterials, 2015, 63:
improved photothermal therapy[J]. Acs Nano, 2017, 11(2): 1419- 115-127.
1431. [19] TAO W, ZHU X B, YU X H, et al. Black phosphorus nanosheets as a
[13] CHEN W S, OUYANG J, LIU H, et al. Black phosphorus robust delivery platform for cancer theranostics[J]. Advanced
nanosheet-based drug delivery system for synergistic photodynamic/ Materials, 2017, 29(1): 1603276. DOI: 10.1002/adma.201603276.
photothermal/chemotherapy of cancer[J]. Advanced Materials, 2017, [20] LIU Y L, JI X Y, LIU J H, et al. Tantalum sulfide nanosheets as a
29(5): 641-647. theranostic nanoplatform for computed tomography imaging-guided
combinatorial chemo-photothermal therapy[J]. Advanced Functional
[14] WU J R, BREMNER D H, NIU S W, et al. Functionalized MoS 2
nanosheet-capped periodic mesoporous organosilicas as a Materials, 2017, 27(39): 1703261. DOI: 10.1002/adfm.201703026.