Page 62 - 《精细化工》2020年第4期
P. 62

第 37 卷第 4 期                             精   细   化   工                                  Vol.37, No.4
             202 0 年 4 月                             FINE CHEMICALS                                 Apr.    2020


              功能材料
                       水基石墨烯-铜复合导电浆料的制备及性能



                               1
                                            1*
                                                                                      1
                                                                                                  1
                      梅   超 ,屈银虎 ,成小乐                    1,2 ,符寒光      1,3 ,张学硕 ,何   炫
                 (1.  西安工程大学  材料工程学院,陕西  西安    710048;2.  金属挤压与锻造装备技术国家重点实验室,
                 陕西  西安    710032;3.  北京工业大学  材料科学与工程学院,北京    100124)
                 摘要:采用水基载体替代有机载体,以粒径为 5 和 15  μm 的混合铜粉作为主导电相,添加少量石墨烯为导
                 电增强相,按一定的质量配比制备水基石墨烯-铜复合导电浆料。用四探针测试仪、SEM 等分析测试手段研
                 究水基载体对浆料性能的影响,分析其导电机理并建立导电相连接模型。结果表明,在 m(去离子水)∶
                 m〔羧甲基纤维素钠(CMC)〕∶m〔聚乙二醇(PEG)〕∶m(消泡剂)=96.9∶1.5∶1.5∶0.1 的条件下制备
                 的水基载体性能较好;水基载体含量为 30%(质量分数)时,制备的水基石墨烯-铜复合导电浆料具有优良
                 的印刷性能,且电阻率较小,为 1.65 mΩ·cm;添加石墨烯的水基复合浆料较纯铜浆料电阻率降低了 97.1%,
                 较有机载体制备的石墨烯-铜复合浆料电阻率降低了 75.78%。制得的导电膜更平坦、致密,导电相间的接
                 触更紧密,大量的石墨烯在铜粉间隙之间或横向搭接,或径向填充,与铜粉形成并联或串联的导电通道,
                 从而形成致密的导电网络,改善复合浆料的导电性能。
                 关键词:石墨烯;水基载体;铜复合浆料;导电机理;功能材料
                 中图分类号:TM241      文献标识码:A      文章编号:1003-5214 (2020) 04-0696-07



                             Preparation and properties of water-based graphene-
                                        copper composite conductive paste


                                        1*
                             1
                                                                        1,3
                                                                                           1
                                                        1,2
                                                                                                     1
                    MEI Chao , QU Yinhu , CHENG Xiaole , FU Hanguang , ZHANG Xueshuo , HE Xuan
                 (1. School of Materials Science & Engineering, Xi′an Polytechnic University, Xi′an 710048, Shaanxi, China; 2. State
                 Key Laboratory of Metal Extrusion and Forging Equipment Technology, Xi′an 710048, Shaanxi, China; 3. College of
                 Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China)
                 Abstract:  Water-based  graphene-copper  composite  conductive  paste  was  prepared  using  water-based
                 carrier instead of organic carrier, inwhich, mixed copper powder with particle size of 5 and 15 μm as mainly
                 conductive  phase  and  a  small  amount  of  graphene  as  conductive  reinforcement  phase.  The  effect  of
                 water-based  carrier  on  the  paste  performance  was  studied  by  four-probe  tester  and  scanning  electron
                 microscope(SEM).  The  possible  conductive  mechanism  of  water-based  graphene-copper  composite
                 conductive paste was discussed and the conductive connection model was established. The results show that
                 the  prepared  water-based  carriers  have  better  performance  when  m(deionized  water)∶m 〔sodium
                 carboxymethyl cellulose (CMC)〕∶m〔polyethylene glycol (PEG)〕∶m(defoamer) being 96.9∶1.5∶1.5∶
                 0.1. When the content of water-based carrier is 30% (mass fraction), the prepared water-based graphene-
                 copper composite conductive paste has excellent printing performance and a small electrical resistivity of
                 1.65 mΩ·cm. The resistivity of water-based composite paste with graphene is 97.1% lower than that of pure
                 copper  paste,  and  75.78%  lower  than  that  of  graphene-copper  composite  paste  prepared  with  organic
                 carrier.The prepared conductive film is flatter and denser, and the contact between conductive phases is
                 more  compact.  A  large  number  of  graphene  overlaps  laterally  or  fills  radially  the  gap  between  copper
                 powders, forming conductive channels in parallel or in series with copper powders and forming a dense

                 收稿日期:2019-09-11;  定用日期:2019-11-11; DOI: 10.13550/j.jxhg.20190863
                 基金项目:陕西省重点研发计划项目(2018GY-130);西安市科技计划项目-高校院所人才服务企业工程(2017074CG/RC037
                 (XAGC007));陕西省科学技术研究发展计划-工业攻关资助项目(2013K09-33);西安工程大学研究生创新基金项目(chx2019063)
                 作者简介:梅   超(1993—),男,硕士生,E-mail:1138610069@qq.com。联系人:屈银虎(1962—),男,教授,E-mail:quyinhu@
                 xpu.edu.cn。
   57   58   59   60   61   62   63   64   65   66   67