Page 28 - 《精细化工》2020年第6期
P. 28
·1094· 精细化工 FINE CHEMICALS 第 37 卷
3 总结与展望 [4] HUANG Y (黄昱), LI X M (李小明), YANG Q (杨麒), et al.
Application of advanced oxidation processes to antibiotic wastewater
treatment[J]. Industrial Water Treatment (工业水处理), 2006, 26(8):
过渡金属硫化物在地球上的储量十分丰富,具
13-17.
有良好的导电性、机械稳定性和热稳定性。TMS 可 [5] MALIK S N, KHAN S M, GHOSH P C, et al. Treatment of
作 Fenton/类 Fenton 反应的(助)催化剂,促进 pharmaceutical industrial wastewater by nano-catalyzed ozonation in
a semi-batch reactor for improved biodegradability[J]. Science of the
2+
3+
Fe /Fe 循环,提高反应速率;与金属化合物复合 Total Environment, 2019, 678: 114-122.
可以提高电导率;与碳基材料复合可原位生成 [6] ZHU Y P, ZHU R L, XI Y F, et al. Strategies for enhancing the
heterogeneous Fenton catalytic reactivity: A review[J]. Applied
H 2 O 2 。TMS 还可直接活化过硫酸盐;通过与金属化
Catalysis B-Environmental, 2019, 255: 117739.
合物或碳基材料复合可提高电导率,增强催化活性。 [7] XIAO R, LUO Z, WEI Z, et al. Activation of peroxymonosulfate/
具有带隙可调特性的 TMS 可作光催化剂;通过元素 persulfate by nanomaterials for sulfate radical-based advanced
oxidation technologies[J]. Current Opinion in Chemical Engineering,
掺杂改性可增加活性位点,降低带隙宽度;通过与 2018, 19: 51-58.
金属化合物或碳基材料复合可降低光生电子-空穴 [8] MATAFONOVA G, BATOEV V. Recent advances in application of
UV light-emitting diodes for degrading organic pollutants in water
对的重组速率,提高光催化性能。今后,TMS 在
through advanced oxidation processes: A review[J]. Water Research,
AOPs 中的研究可从以下 4 个方面进行: 2018, 132: 177-189.
(1)光照、电/磁场、溶解氧等因素的变化可能 [9] GHIME D, GHOSH P. Removal of organic compounds found in the
wastewater through electrochemical advanced oxidation processes: A
会对 TMS 参与的 AOPs 去除有机污染物的性能产生 review[J]. Russian Journal of Electrochemistry, 2019, 55(7): 591-620.
影响。尽管对单个物理因素辅助的 AOPs 进行了研 [10] SUN Y (孙怡), YU L L (于利亮), HUANG H B (黄浩斌), et al.
Research trend and practical development of advanced oxidation
究,但对于不同物理因素组合是否也会促进有机污
process on degradation of recalcitrant organic wastewater[J]. CIESC
染物的降解研究有待深入; Journal (化工学报), 2017, 68(5): 1743-1756.
(2)目前,大多数研究着重于 TMS 催化剂组 [11] FU G, LEE J M. Ternary metal sulfides for electrocatalytic energy
conversion[J]. Journal of Materials Chemistry A, 2019, 7(16): 9386-
成元素间的电子转移和活性物质降解目标污染物的 9405.
途径上,而对于非均相 TMS 催化剂与水溶性氧化剂 [12] RADISAVLJEVIC B, RADENOVIC A, BRIVIO J, et al.
和污染物间的表面接触以及固液传质的报道较少, Single-layer MoS 2 transistors[J]. Nature Nanotechnology, 2011, 6(3):
147-150.
有必要深入研究; [13] LIN X Y (林潇羽), WANG J (王璟). Research progress on preparation
(3)现阶段 TMS 参与的 AOPs 的研究对象大多 and application of two-dimensional transition metal dichalcogenides
nanomaterials[J]. Acta Chimica Sinica (化学学报), 2017, 75(10):
是模拟废水,尽管都表现出对单一目标污染物的高 979-990.
去除效率,但在实际应用中,废水环境中存在大量 [14] WANG N, ZHENG T, ZHANG G, et al. A review on Fenton-like
–
–
干扰杂质,如以 Cl 和 HCO 3 为代表的阴离子和以腐 processes for organic wastewater treatment[J]. Journal of Environmental
Chemical Engineering, 2016, 4(1): 762-787.
植酸和蛋白质为代表的天然有机物,这些杂质对 [15] NAVALON S, DE MIGUEL M, MARTIN R, et al. Enhancement of
AOPs 去除目标污染物效果的影响、多种污染物与背 the catalytic activity of supported gold nanoparticles for the Fenton
reaction by light[J]. Journal of the American Chemical Society, 2011,
景杂质的协同作用以及 AOPs 过程中是否会生成毒
133(7): 2218-2226.
性更强的中间产物,都有待进一步研究; [16] HUANG C P, HUANG Y H. Comparison of catalytic decomposition
(4)TMS 纳米材料及其改性的制备成本较高, of hydrogen peroxide and catalytic degradation of phenol by
immobilized iron oxides[J]. Applied Catalysis A: General, 2008,
而黄铜矿(CuFeS 2 )、黄铁矿(FeS 2 )和粉煤灰对过 346(1/2): 140-148.
硫酸盐或 H 2 O 2 也具有优良的催化活性,因此,有必 [17] XING M, XU W, DONG C, et al. Metal sulfides as excellent
co-catalysts for H 2O 2, decomposition in advanced oxidation
要从天然矿物或工业废弃物中寻找有效的催化剂,
processes[J]. Chem, 2018, 4(6): 1359-1372.
这样不仅可以降低 AOPs 应用的成本,还可以实现 [18] CHHOWALLA M, SHIN H S, EDA G, et al. The chemistry of
废物利用。 two-dimensional layered transition metal dichalcogenide nanosheets[J].
Nature Chemistry, 2013, 5(4): 263-275.
[19] JARAMILLO T F, JORGENSEN K P, BONDE J, et al. Identification
参考文献:
of active edge sites for electrochemical H 2 evolution from MoS 2
[1] BAGAL M V, GOGATE P R. Wastewater treatment using hybrid nanocatalysts[J]. Science, 2007, 317(5834): 100-102.
treatment schemes based on cavitation and Fenton chemistry: A [20] HINNEMANN B, MOSES P G, BONDE J, et al. Biornimetic
review[J]. Ultrasonics Sonochemistry, 2014, 21(1): 1-14. hydrogen evolution: MoS 2 nanoparticles as catalyst for hydrogen
[2] DHAKSHINAMOORTHY A, NAVALON S, ALVARO M, et al. evolution[J]. Journal of the American Chemical Society, 2005,
Metal nanoparticles as heterogeneous Fenton catalysts[J]. 127(15): 5308-5309.
ChemSusChem, 2012, 5(1): 46-64. [21] LIU J, DONG C C, DENG Y X, et al. Molybdenum sulfide
[3] YE L J (叶林静), GUAN W S (关卫省), LI Y L (李宇亮). Research co-catalytic Fenton reaction for rapid and efficient inactivation of
advances in bisphenol A degraded by advanced oxidation processes[J]. Escherichia coli[J]. Water Research, 2018, 145: 312-320.
Chemical Industry and Engineering Progress (化工进展), 2013, [22] DONG C C, JI J H, SHEN B, et al. Enhancement of H 2O 2
32(4): 909-918. decomposition by the co-catalytic effect of WS 2 on the Fenton