Page 51 - 《精细化工》2020年第7期
P. 51

第 7 期                         张延鹏,等:  丙烯/丙烷吸附分离材料研究进展                                   ·1333·


            [6]   GAO Y Q (高亚琴).  Comparative  analysis  of  energy  consumption   2002, 53(1/2/3): 45-57.
                 and economical efficiency for MTO propylene rectification tower[J].   [21]  OLSON D H, CAMBLOR M A, VILLAESCUSA L A, et al. Light
                 Sino-Global Energy (中外能源), 2017, 22(5): 76-80.    hydrocarbon sorption properties of pure silica Si-CHA and ITQ-3 and
            [7]   LIU  J  (刘江),  WU  Y  F  (吴玉芳),  XU  F  (许峰),  et al.  Effects  of   high  silica  ZSM-58[J].  Microporous  and  Mesoporous  Materials,
                 temperature on adsorption mechanism and adsorption selectivity of   2004, 67(1): 27-33.
                 C 3H 6  and  C 3H 8  on  MOF-74[J].  CIESC  Journal  (化工学报),  2016,   [22]  RUTHVEN D M, REYES S C. Adsorptive separation of light olefins
                 67(5): 1942-1948.                                 from paraffins[J]. Microporous Mesoporous Mater, 2007, 104(1/2/3):
            [8]   PENG J, WANG H, OLSON D H, et al. Efficient kinetic separation   59-66.
                 of  propene  and  propane  using  two  microporous  metal  organic   [23]  JANSSEN  M.  Rejuvenating  sapo  and/or  alpo  molecular  sieve  with
                 frameworks[J]. Chemical Communications, 2017, 53(67): 9332-9335.   anhydrous liquid or vapor: US6825391 [P]. 2001-04-26.
            [9]   MIROSLAV R,  EVA  K, FRANCISCA S O R,  et al.  Experimental   [24]  LIU  J,  CALVERLEY  E  M,  MCADON  M  H,  et al.  New  carbon
                 and theoretical study of propene adsorption on K-FER zeolites: New   molecular sieves for propylene/propane separation with high working
                 evidence  of  bridged  complex  formation[J].  Journal  of  Physical   capacity and separation factor[J]. Carbon, 2017, 123: 273-282.
                 Chemistry C, 2018, 122(11): 6128-6136.        [25]  DABROWSKI A. Adsorption-from theory to practice[J]. Advances in
            [10]  PARK K S, NI Z, COTE A P, et al. Exceptional chemical and thermal   Colloid and Interface Science, 2001, 93(1/2/3): 135-224.
                 stability  of  zeolitic  imidazolate  frameworks[J].  Proceedings  of the   [26]  LIU J, LIU Y, KAYRAK T D, et al. A new carbon molecular sieve
                 National Academy of Sciences, 2006, 103(27): 10186-10191.   for propylene/propane separations[J]. Carbon, 2015, 85: 201-211.
            [11]  DOUGLAS M R. Molecular sieve separations[J]. Chemie Ingenieur   [27]  HAOHAN  W,  QIHAN  G,  DAVID  H  O,  et al.  Commensurate
                 Technik, 2011, 83(1/2): 44-52.                    adsorption  of  hydrocarbons  and  alcohols  in  microporous  metal
            [12]  PADIN J, REGE S U, YANG R T, et al. Molecular sieve sorbents for   organic frameworks[J]. Chemical Reviews, 2012, 112(2): 836-868.
                 kinetic  separation  of  propane/propylene[J].  Chemical  Engineering   [28]  ZOEY R H, ERIC D B, JEFFREY R. L. Hydrocarbon separations in
                 Science, 2000, 55(20): 4525-4535.                 metal−organic frameworks[J]. Chemistry of Materials, 2014, 26(1):
            [13]  GRANDE C A, RODRIGUES A E. Propane/propylene separation by   323-338.
                 pressure swing adsorption using zeolite 4A[J]. Industrial & Engineering   [29]  YOUN-SANG B, CHANG Y L, KI C K, et al. High propene/propane
                 Chemistry Research, 2005,44(23): 8815-8829.       selectivity  in  isostructural  metal-organic  frameworks  with  high
            [14]  MERAD-DIB H, BENDENIA S, MEROUANI D R, et al. Adsorption of   densities  of  open  metal  sites[J].  Angewandte  Chemie  International
                                             3+
                                                    2+
                                    n+
                                        n+
                 propylene and propane onto M X (M  = Cr  and/or Ni ) zeolites   Edition, 2012, 51(8): 1857-1860.
                 and  comparison  between  binary  and  ternary  exchanges[J].  Journal of   [30]  LI  K,  OLSON  D  H,  SEIDEL  J,  et al.  Zeolitic  imidazolate
                 Chemical & Engineering Data, 2016, 61(10): 3510-3518.   frameworks for kinetic separation of propane and propene[J]. Journal
            [15]  BARRETT P  A,  BOIX T,  PUCHE  M,  et al.  ITQ-12: A new   of the American Chemical Society, 2009, 131(30): 10368-10369.
                 microporous  silica  polymorph  potentially  useful  for  light  hydrocarbon   [31]  CADIAU  A,  ADIL  K,  BHATT  P  M,  et al.  A  metal-organic
                 separations[J]. Chemical Communications, 2003, 17: 2114-2115.   framework-based  splitter  for  separating  propylene  from  propane[J].
            [16]  OLSON D H, YANG X, CAMBLOR M A. ITQ-12: A zeolite having   Science, 2016, 353(6295): 137-140.
                 temperature  dependent  adsorption  selectivity  and  potential  for   [32]  BLOCH E D,  QUEEN W L,  KRISHNA R,  et al.  Hydrocarbon
                 propene  separation[J].  Journal  of  Physical  Chemistry  B,  2004,   separations  in  a  metal-organic  framework  with  open  iron( Ⅱ )
                 108(30): 11044-11048.                             coordination sites[J]. Science, 2012, 335(6076): 1606-1610.
            [17]  YANG X, TOBY B H, CAMBLOR M A, et al. Propene adsorption   [33]  BACHMAN  J  E,  KAPELEWSKI  M  T,  REED  D  A,  et al.
                 sites in zeolite ITQ-12: A combined synchrotron X-ray and neutron   M2(m-dobdc)  (M  =  Mn,  Fe,  Co,  Ni)  metal-organic  frameworks  as
                 diffraction study[J]. Journal of Physical Chemistry B, 2005, 109(16):   highly selective, high-capacity adsorbents for olefin/paraffin separations[J].
                 7894-7899.                                        Journal of the American Chemical Society, 2017, 139(43): 15363-15370.
            [18]  GUTIERREZ-SEVILLANO  J  J,  DUBBELDAM  D,  REY  F,  et al.   [34]  WANG Y,HUANG Y,ZHANG W, et al. Selective aerobic oxidation
                 Analysis  of  the  ITQ-12  zeolite  performance  in  propane-propylene   of  metal-organic  framework  boosts  thermodynamic  and  kinetic
                 separations  using  a  combination  of  experiments  and  molecular   propylene/propane  selectivity[J].  Angewandte  Chemie  International
                 simulations[J].  Journal  of  Physical  Chemistry  C,  2010,  114(35):   Edition, 2019, 58: 7692-7696.
                 14907-14914.                                  [35]  ZHOU  S,  WEI  Y  Y,  LI  L  B,  et al.  Paralyzed  membrane:  Current-
            [19]  ZHU  W,  KAPTEIJN  F,  MOULIJN  J  A,  et al.  Shape  selectivity  in   driven synthesis of a metal-organic framework with sharpened propene/
                 adsorption on the all-silica DD3R[J]. Langmuir, 2000, 16(7): 3322-3329.   propane separation[J]. Science Advances, 2018, 4(10): 1393-1401.
            [20]  TER-HORST J H,  BROMLEY S T,  ROSMALEN G  M,  et al.   [36]  MA  X,  KUMAR  P,  MITTAL  N,  et al.  Zeolitic  imidazolate
                 Molecular modelling of the transport behaviour of C3 and C4 gases   framework membranes made by ligand-induced permselectivation[J].
                 through the zeolite DD3R[J]. Microporous and Mesoporous Materials,   Science, 2018, 361(6406): 1009-1011.
   46   47   48   49   50   51   52   53   54   55   56