Page 116 - 《精细化工》2020年第8期
P. 116

·1614·                            精细化工   FINE CHEMICALS                                 第 37 卷

                 Journal, 2020, 384: 123259.                   [19]  YAO X X, LIU X H, ZHU D, et al. Synthesis of cube-like Ag/AgCl
            [15]  XIA B H,  CUI  Q  L, HE  F,  et al.  Preparation  of  hybrid  hydrogel   plasmonic  photocatalyst  with  enhanced  visible  light  photocatalytic
                 containing Ag nanoparticles by a green in situ reduction method[J].   activity[J]. Catalysis Communications, 2015, 59: 151-155.
                 Langmuir, 2012, 28(30): 11188-11194.          [20]  LIU H T, GU X Y, WEI C H, et al. Threshold concentrations of silver
            [16]  WEN X J, NIU C G, HUANG D W, et al. Study of the photocatalytic   ions exist for the sunlight induced formation of silver nanoparticles
                 degradation pathway of norfloxacin and mineralization activity using   in the presence of natural organic matter[J]. Environmental Science
                 a novel ternary Ag/AgCl-CeO 2 photocatalyst[J]. Journal of Catalysis,   & Technology, 2018, 52(7): 4040-4050.
                 2017, 355: 73-86.                             [21]  ZHU M S, CHEN P L, MA W H, et al. Template-free synthesis of
            [17]  FAN  G  D,  ZHENG  X  M,  LUO  J,  et al.  Rapid  synthesis  of   cube-like Ag/AgCl nanostructures via a direct-precipitation protocol:
                 Ag/AgCl@ZIF-8 as a highly efficient photocatalyst for degradation of   Highly  efficient  sunlight-driven  plasmonic  photocatalysts[J].  ACS
                 acetaminophen  under  visible  light[J].  Chemical  Engineering  Journal,   Applied Materials & Interfaces, 2012, 4(11): 6386-6392.
                 2018, 351: 782-790.                           [22]  TANG L Z,  TANG F,  LI M,  et al.  Facile  synthesis  of  Ag@AgCl-
            [18]  DONG R F, TIAN B Z, ZENG C Y, et al. Ecofriendly synthesis and   contained cellulose hydrogels and their application[J]. Colloids and
                 photocatalytic  activity  of  uniform  cubic  Ag@AgCl  plasmonic   Surfaces  A-Physicochemical  and  Engineering  Aspects,  2018,  553:
                 photocatalyst[J]. Journal of Physical Chemistry C, 2013, 117: 213-220.   618-623.

            (上接第 1566 页)                                           Comptes Rendus Chimie, 2015, 18(8): 834-847.
                                                               [56]  HE  Y  P,  LIU M,  DAI C  Y,  et al.  Modification  of  nanocrystalline
            [49]  LI  Z  Y,  ZHONG  Z  P,  ZHANG  B,  et al.  Effect  of  alkali-treated   HZSM-5  zeolite  with  tetrapropylammonium  hydroxide  and  its
                 HZSM-5  zeolite  on  the  production  of  aromatic  hydrocarbons  from   catalytic  performance  in  methanol  to  gasoline  reaction[J].  Chinese
                 microwave assisted catalytic fast pyrolysis (MACFP) of rice husk[J].   Journal of Catalysis, 2013, 34(6): 1148-1158.
                 Science of The Total Environment, 2020, 703: 134605-134617.     [57]  YANG X L, SUN T, MA J G, et al. The influence of intimacy on the
            [50]  XU L, LIU Z M, DU A P, et al. Synthesis, characterization, and MTO   ‘iterative reactions’ during OX-ZEO process for aromatic production[J].
                 performance of MeAPSO-34 molecular sieves[J]. Studies in Surface   Journal of Energy Chemistry, 2019, 35: 60-65.
                 Science and Catalysis, 2004, 147: 445-450.     [58]  NI Y M, CHEN Z Y, FU Y, et al. Selective conversion of CO 2 and H 2
            [51]  ZHANG J F, ZHANG M, CHEN S Y, et al. Hydrogenation of CO 2   into aromatics[J]. Nature Communications, 2018, 9(1): 3457-3463.
                 into aromatics over a ZnCrO x-zeolite composite catalyst[J]. Chemical   [59]  GAO P, DANG S S, LI S G, et al. Direct production of lower olefins
                 Communications, 2019, 55(7): 973-976.             from  CO 2  conversion  via  bifunctional  catalysis[J].  ACS  Catalysis,
            [52]  CHEN J Y (陈静宇), ZHANG J H (张建红), SHENG H (盛浩), et   2018, 8(1): 571-578.
                 al.  Design  and  preparation  of  CuZnTiO 2/SAPO-34  bifunctional   [60]  NI  Y  M,  LIU  Y,  CHEN  Z  Y,  et al.  Realizing  and  recognizing
                 catalyst and its catalytic performance for CO 2 hydrogenation to light   syngas-to-olefins reaction via a dual-bed catalyst[J]. ACS Catalysis,
                 olefins[J]. Chemical Industry and Engineering Progress (化工进展),   2019, 9(2): 1026-1032.
                 2019, 39(2): 567-576.                         [61]  WEI J,  GE Q J,  YAO  R  W,  et al.  Directly  converting  CO 2  into  a
            [53]  CHEN T Y, CAO C X, CHEN T B, et al. Unraveling highly tunable   gasoline fuel[J]. Nature Communications, 2017, 8(1): 15174-15183.
                 selectivity  in  CO 2  hydrogenation  over  bimetallic  In-Zr  oxide   [62]  YANG  X  Y  (杨晓艳),  SUN  S  (孙松),  DING  J  J  (丁建军),  et al.
                 catalysts[J]. ACS Catalysis, 2019, 9(9): 8785-8797.     Preparation, structure and performance of [CuO-ZnO-Al 2O 3]/[HZSM-5]
            [54]  LI Z L, WANG J J, QU Y Z, et al. Highly selective conversion of   core-shell  bifunctional  catalysts  for  one-step  synthesis  of  dimethyl
                 carbon  dioxide  to  lower  olefins[J].  ACS  Catalysis,  2017,  7(12):   ether  from  CO 2+H 2[J].  Acta  Physico-Chimica  Sinica  (物理化学学
                 8544-8548.                                        报), 2012, 28(8): 1957-1963.
            [55]  AHMADPOUR  J,  TAGHIZADEH  M.  Selective  production  of   [63]  NIE R F,  LEI  H,  PAN  S  Y,  et al.  Core-shell  structured
                 propylene from methanol over high-silica mesoporous ZSM-5 zeolites   CuO-ZnO@H-ZSM-5  catalysts  for  CO  hydrogenation  to  dimethyl
                 treated  with  NaOH  and  NaOH/tetrapropylammonium  hydroxide[J].   ether[J]. Fuel, 2012, 96: 419-425.


            (上接第 1586 页)                                           electrochemical biosensing[J]. Analytica Chimica Acta, 2011, 686(1/2):
                                                                   81-86.
            [19]  ALAMDRI S, KARKHANEH A, TAFRESHI M J, et al. Ultra-thin   [25]  CHEN L Y, GU B X, ZHU G P, et al. Tyrosinase biosensor based on
                 hafnium  doped  ZnO  films  with  enhanced  optical  transparency  and   zinc oxide nanorods[J]. Nano, 2007, 2(5): 281-284.
                 electrical  conductivity[J].  Materials  Research  Express,  2019,  6(5):   [26]  KUNENE  K,  SABELA  M,  KANCHI  S, et al.  High  performance
                 055020.                                           electrochemical  biosensor  for  bisphenol  a  using  screen  printed
            [20]  AHMAD M, AHMED E, HONG Z L, et al. Structural, optical and   electrodes modified with multiwalled carbon nanotubes functionalized
                 photocatalytic   properties   of   hafnium   doped   zinc   oxide   with  silver-doped  zinc  oxide[J].  Waste  and  Biomass  Valorization,
                 nanophotocatalyst[J].  Ceramics  International,  2013,  39(8):  8693-   2020, 11(3): 1085-1096.
                 8700.
            [21]  KUMAR  M,  JEONG  H,  LEE  D,  et al.  Sol-gel  derived  Hf-and   [27]  GU B X,  XU C  X, ZHU G P,  et al. Tyrosinase immobilization on
                 Mg-doped high-performance ZnO thin film transistors[J]. Journal of   ZnO nanorods for phenol detection[J]. Journal of Physical Chemistry
                 Alloys and Compounds, 2017, 720: 230-238.         B, 2009, 113(1): 377-381.
            [22]  ALFAKES B, VILLEGAS J, APOSTOLERIS H, et al. Optoelectronic   [28]  HADDAOUI  M,  RAOUAFI  N.  Chlortoluron-induced  enzymatic
                 tunability of Hf-doped ZnO for photovoltaic applications[J]. Journal   activity  inhibition  in  tyrosinase/ZnO  NPs/SPCE  biosensor  for  the
                 of Physical Chemistry C, 2019, 123(24): 15258-15266.   detection  of  ppb  levels  of  herbicide[J].  Sensors  and  Actuators  B:
            [23]  XI J B, ZHANG Y, WANG Q J, et al. Multi-element doping design   Chemical, 2015, 219: 171-178.
                 of high-efficient carbocatalyst for electrochemical sensing of cancer   [29]  CHEN J B (陈泇冰), LU Y L (鲁猷栾), HUANG L S (黄乐舒), et
                 cells[J]. Sensors and Actuators B: Chemical, 2018, 273: 108-117.   al.  Preparation  of  porous  carbon-nanogold  electrode  by  one-step
            [24]  WU S, WANG H N, TAO S Y, et al. Magnetic loading of tyrosinase-   pyrolysis method for the determination of phenols[J]. Fine Chemicals
                 Fe 3O 4/mesoporous  silica  core/shell  microspheres  for  high  sensitive   (精细化工), 2020, 37(4): 720-726.
   111   112   113   114   115   116   117   118   119   120   121