Page 116 - 《精细化工》2020年第8期
P. 116
·1614· 精细化工 FINE CHEMICALS 第 37 卷
Journal, 2020, 384: 123259. [19] YAO X X, LIU X H, ZHU D, et al. Synthesis of cube-like Ag/AgCl
[15] XIA B H, CUI Q L, HE F, et al. Preparation of hybrid hydrogel plasmonic photocatalyst with enhanced visible light photocatalytic
containing Ag nanoparticles by a green in situ reduction method[J]. activity[J]. Catalysis Communications, 2015, 59: 151-155.
Langmuir, 2012, 28(30): 11188-11194. [20] LIU H T, GU X Y, WEI C H, et al. Threshold concentrations of silver
[16] WEN X J, NIU C G, HUANG D W, et al. Study of the photocatalytic ions exist for the sunlight induced formation of silver nanoparticles
degradation pathway of norfloxacin and mineralization activity using in the presence of natural organic matter[J]. Environmental Science
a novel ternary Ag/AgCl-CeO 2 photocatalyst[J]. Journal of Catalysis, & Technology, 2018, 52(7): 4040-4050.
2017, 355: 73-86. [21] ZHU M S, CHEN P L, MA W H, et al. Template-free synthesis of
[17] FAN G D, ZHENG X M, LUO J, et al. Rapid synthesis of cube-like Ag/AgCl nanostructures via a direct-precipitation protocol:
Ag/AgCl@ZIF-8 as a highly efficient photocatalyst for degradation of Highly efficient sunlight-driven plasmonic photocatalysts[J]. ACS
acetaminophen under visible light[J]. Chemical Engineering Journal, Applied Materials & Interfaces, 2012, 4(11): 6386-6392.
2018, 351: 782-790. [22] TANG L Z, TANG F, LI M, et al. Facile synthesis of Ag@AgCl-
[18] DONG R F, TIAN B Z, ZENG C Y, et al. Ecofriendly synthesis and contained cellulose hydrogels and their application[J]. Colloids and
photocatalytic activity of uniform cubic Ag@AgCl plasmonic Surfaces A-Physicochemical and Engineering Aspects, 2018, 553:
photocatalyst[J]. Journal of Physical Chemistry C, 2013, 117: 213-220. 618-623.
(上接第 1566 页) Comptes Rendus Chimie, 2015, 18(8): 834-847.
[56] HE Y P, LIU M, DAI C Y, et al. Modification of nanocrystalline
[49] LI Z Y, ZHONG Z P, ZHANG B, et al. Effect of alkali-treated HZSM-5 zeolite with tetrapropylammonium hydroxide and its
HZSM-5 zeolite on the production of aromatic hydrocarbons from catalytic performance in methanol to gasoline reaction[J]. Chinese
microwave assisted catalytic fast pyrolysis (MACFP) of rice husk[J]. Journal of Catalysis, 2013, 34(6): 1148-1158.
Science of The Total Environment, 2020, 703: 134605-134617. [57] YANG X L, SUN T, MA J G, et al. The influence of intimacy on the
[50] XU L, LIU Z M, DU A P, et al. Synthesis, characterization, and MTO ‘iterative reactions’ during OX-ZEO process for aromatic production[J].
performance of MeAPSO-34 molecular sieves[J]. Studies in Surface Journal of Energy Chemistry, 2019, 35: 60-65.
Science and Catalysis, 2004, 147: 445-450. [58] NI Y M, CHEN Z Y, FU Y, et al. Selective conversion of CO 2 and H 2
[51] ZHANG J F, ZHANG M, CHEN S Y, et al. Hydrogenation of CO 2 into aromatics[J]. Nature Communications, 2018, 9(1): 3457-3463.
into aromatics over a ZnCrO x-zeolite composite catalyst[J]. Chemical [59] GAO P, DANG S S, LI S G, et al. Direct production of lower olefins
Communications, 2019, 55(7): 973-976. from CO 2 conversion via bifunctional catalysis[J]. ACS Catalysis,
[52] CHEN J Y (陈静宇), ZHANG J H (张建红), SHENG H (盛浩), et 2018, 8(1): 571-578.
al. Design and preparation of CuZnTiO 2/SAPO-34 bifunctional [60] NI Y M, LIU Y, CHEN Z Y, et al. Realizing and recognizing
catalyst and its catalytic performance for CO 2 hydrogenation to light syngas-to-olefins reaction via a dual-bed catalyst[J]. ACS Catalysis,
olefins[J]. Chemical Industry and Engineering Progress (化工进展), 2019, 9(2): 1026-1032.
2019, 39(2): 567-576. [61] WEI J, GE Q J, YAO R W, et al. Directly converting CO 2 into a
[53] CHEN T Y, CAO C X, CHEN T B, et al. Unraveling highly tunable gasoline fuel[J]. Nature Communications, 2017, 8(1): 15174-15183.
selectivity in CO 2 hydrogenation over bimetallic In-Zr oxide [62] YANG X Y (杨晓艳), SUN S (孙松), DING J J (丁建军), et al.
catalysts[J]. ACS Catalysis, 2019, 9(9): 8785-8797. Preparation, structure and performance of [CuO-ZnO-Al 2O 3]/[HZSM-5]
[54] LI Z L, WANG J J, QU Y Z, et al. Highly selective conversion of core-shell bifunctional catalysts for one-step synthesis of dimethyl
carbon dioxide to lower olefins[J]. ACS Catalysis, 2017, 7(12): ether from CO 2+H 2[J]. Acta Physico-Chimica Sinica (物理化学学
8544-8548. 报), 2012, 28(8): 1957-1963.
[55] AHMADPOUR J, TAGHIZADEH M. Selective production of [63] NIE R F, LEI H, PAN S Y, et al. Core-shell structured
propylene from methanol over high-silica mesoporous ZSM-5 zeolites CuO-ZnO@H-ZSM-5 catalysts for CO hydrogenation to dimethyl
treated with NaOH and NaOH/tetrapropylammonium hydroxide[J]. ether[J]. Fuel, 2012, 96: 419-425.
(上接第 1586 页) electrochemical biosensing[J]. Analytica Chimica Acta, 2011, 686(1/2):
81-86.
[19] ALAMDRI S, KARKHANEH A, TAFRESHI M J, et al. Ultra-thin [25] CHEN L Y, GU B X, ZHU G P, et al. Tyrosinase biosensor based on
hafnium doped ZnO films with enhanced optical transparency and zinc oxide nanorods[J]. Nano, 2007, 2(5): 281-284.
electrical conductivity[J]. Materials Research Express, 2019, 6(5): [26] KUNENE K, SABELA M, KANCHI S, et al. High performance
055020. electrochemical biosensor for bisphenol a using screen printed
[20] AHMAD M, AHMED E, HONG Z L, et al. Structural, optical and electrodes modified with multiwalled carbon nanotubes functionalized
photocatalytic properties of hafnium doped zinc oxide with silver-doped zinc oxide[J]. Waste and Biomass Valorization,
nanophotocatalyst[J]. Ceramics International, 2013, 39(8): 8693- 2020, 11(3): 1085-1096.
8700.
[21] KUMAR M, JEONG H, LEE D, et al. Sol-gel derived Hf-and [27] GU B X, XU C X, ZHU G P, et al. Tyrosinase immobilization on
Mg-doped high-performance ZnO thin film transistors[J]. Journal of ZnO nanorods for phenol detection[J]. Journal of Physical Chemistry
Alloys and Compounds, 2017, 720: 230-238. B, 2009, 113(1): 377-381.
[22] ALFAKES B, VILLEGAS J, APOSTOLERIS H, et al. Optoelectronic [28] HADDAOUI M, RAOUAFI N. Chlortoluron-induced enzymatic
tunability of Hf-doped ZnO for photovoltaic applications[J]. Journal activity inhibition in tyrosinase/ZnO NPs/SPCE biosensor for the
of Physical Chemistry C, 2019, 123(24): 15258-15266. detection of ppb levels of herbicide[J]. Sensors and Actuators B:
[23] XI J B, ZHANG Y, WANG Q J, et al. Multi-element doping design Chemical, 2015, 219: 171-178.
of high-efficient carbocatalyst for electrochemical sensing of cancer [29] CHEN J B (陈泇冰), LU Y L (鲁猷栾), HUANG L S (黄乐舒), et
cells[J]. Sensors and Actuators B: Chemical, 2018, 273: 108-117. al. Preparation of porous carbon-nanogold electrode by one-step
[24] WU S, WANG H N, TAO S Y, et al. Magnetic loading of tyrosinase- pyrolysis method for the determination of phenols[J]. Fine Chemicals
Fe 3O 4/mesoporous silica core/shell microspheres for high sensitive (精细化工), 2020, 37(4): 720-726.