Page 181 - 《精细化工》2020年第9期
P. 181
第 9 期 张 颖,等: 冷烧结工艺制备石榴石固态电解质及其性能 ·1895·
选取合适的压力至关重要,在本研究中冷烧结压力 solid-state fast Li ion conductors for Li batteries: Critical review[J].
Chemical Society Reviews, 2014, 43(13): 4714-4727.
为 510 MPa 时样品离子电导率较大。
[12] DUAN H N, ZHENG H P, ZHOU Y, et al. Stability of garnet-type Li
ion conductors: An overview[J]. Solid State Ionics, 2018, 318: 45-53.
3 结论 [13] MCOWEN D W, XU S M, GONG Y H, et al. 3D-Printing
electrolytes for solid-state batteries[J]. Advanced Materials, 2018,
30(18): 1707132.
采用冷烧结 工艺制备 了 Li 5.95 Al 0.35 La 3 Zr 2 O 12
[14] LEE J M, KIM T, BAEK S W, et al. High lithium ion conductivity of
石榴石固态电解质,在冷烧结工艺后采用后续热处 Li 7La 3Zr 2O 12 synthesized by solid state reaction[J]. Solid State
理可使晶粒长大,改善离子传导性能。结果表明, Ionics, 2014, 258: 13-17.
[15] BAI L (白玲), ZHAO X Y(赵兴宇), SHEN W P(沈卫平), et al.
石榴石固态电解质的晶体结构不随冷烧结时间和压 Spark plasma sintering technology and its application in preparing
力的改变而改变。过长的冷烧结时间会导致样品开 eramics[J]. Materials Reports (材料导报), 2007, 21(4): 96-99.
[16] BAEK S W, LEE J M, KIM T Y, et al. Garnet related lithium ion
裂,在适宜的范围内(15~30 min)冷烧结时间对样 conductor processed by spark plasma sintering for all solid state
品的致密性和电导率影响可忽略不计,然而冷烧结 batteries[J]. Journal of Power Sources, 2014, 249: 197-206.
时间过短对样品纯度的提高是不利的。随着冷烧 [17] GUO H Z, BAKER A, GUO J, et al. Protocol for ultralow-
temperature ceramic sintering: An integration of nanotechnology and
结压力的增加,样品的体积密度随之增大。当压力 the cold sintering process[J]. ACS Nano, 2016, 10(11): 10606-10614.
增大到 510 MPa,可以获得具有较大体积密度的 [18] GUO J, BERBANO S S, GUO H Z, et al. Cold sintering process of
composites: Bridging the processing temperature gap of ceramic and
Li 5.95 Al 0.35 La 3 Zr 2 O 12 石榴石固态电解质,当冷烧结压 polymer materials[J]. Advanced Functional Materials, 2016, 26(39):
力继续增大,样品的体积密度反而下降。冷烧结压 7115-7121.
[19] FUNAHASHI S, GUO J, GUO H Z, et al. Demonstration of the cold
力对样品离子电导率的影响与对体积密度的影响规 sintering process study for the densification and grain growth of ZnO
律相同,在冷烧结压力为 510 MPa、温度为 200 ℃、 ceramics[J]. Journal of the American Ceramic Society, 2017, 100(2):
546-553.
时间为 30 min 条件下离子电导率较大,为 2.66×
[20] GUO H Z, GUO J, BAKER A, et al. Cold sintering process for
–6
10 S/cm,此时材料的晶界电阻较小。冷烧结工艺 ZrO 2-based ceramics: Significantly enhanced densification evolution
可以在较低温度下制备石榴石固态电解质材料,但 in yttria-doped ZrO 2[J]. Journal of the American Ceramic Society,
2017, 100(2): 491-495.
影响因素(如粉体粒度、液相体积、冷烧结压力、 [21] GUO J, GUO H Z, HEIDARY D S B, et al. Semiconducting
时间、后续热处理等)较多,应根据不同材料体系 properties of cold sintered V 2O 5 ceramics and co-sintered V 2O 5-PEDOT:
PSS composites[J]. Journal of the European Ceramic Society, 2017,
确定具体的工艺参数。 37(4): 1529-1534.
[22] SEO J H, GUO J, GUO H Z, et al. Cold sintering of a Li-ion cathode:
参考文献: LiFePO 4-composite with high volumetric capacity[J]. Ceramics
International, 2017, 43(17): 15370-15374.
[1] TARASCON J M, ARMAND M. Issues and challenges facing
rechargeable lithium batteries[J]. Nature, 2001, 414(6861): 359-367. [23] BERBANO S S, GUO J, GUO H Z, et al. Cold sintering process of
[2] MANTHIRAM A, YU X W, WANG S F. Lithium battery chemistries Li 1.5Al 0.5Ge 1.5(PO 4) 3 solid electrolyte[J]. Journal of the American
enabled by solid-state electrolytes[J]. Nature Reviews Materials, Ceramic Society, 2017, 100(5): 2123-2135.
2017, 2(4): 1-16. [24] LENG H Y, HUANG J J, NIE J Y, et al. Cold sintering and ionic
[3] QUARTARONE E, MUSTARELLI P. Electrolytes for solid-state conductivities of Na 3.256Mg 0.128Zr 1.872Si 2PO 12 solid electrolytes[J].
lithium rechargeable batteries: Recent advances and perspectives[J]. Journal of Power Sources, 2018, 391: 170-179.
Chemical Society Reviews, 2011, 40(5): 2525-2540. [25] LIU Y B (刘彦博). The effect of doping on LLZO and the optimization
[4] MEESALA Y, JENA A, CHANG H, et al. Recent advancements in of the Li/LLZO interface[D]. Shanghai: Shanghai Jiao Tong University
Li-ion conductors for all-solid-state Li-ion batteries[J]. ACS Energy (上海交通大学), 2018.
Letters, 2017, 2(12): 2734-2751. [26] JIN Y, MCGINN P J. Al-doped Li 7La 3Zr 2O 12 synthesized by a
[5] SCHNELL J, GUNTHER T, KNOCHE T, et al. All-solid-state polymerized complex method[J]. Journal of Power Sources, 2011,
lithium-ion and lithium metal batteries-paving the way to large-scale 196(20): 8683-8687.
production[J]. Journal of Power Sources, 2018, 382: 160-175. [27] GEIGER C A, ALEKSEEV E, LAZIC B, et al. Crystal chemistry and
[6] ZHANG Q Q, LIU K, DING F, et al. Recent advances in solid stability of Li 7La 3Zr 2O 12 garnet: A fast lithium-ion conductor[J].
polymer electrolytes for lithium batteries[J]. Nano Research, 2017, Inorganic Chemistry, 2011, 50(3): 1089-1097.
10(12): 4139-4174. [28] RANGASAMY E, WOLFENSTINE J, SAKAMOTO J. The role of
[7] STRAMARE S, THANGADURAI V, WEPPNER W. Lithium Al and Li concentration on the formation of cubic garnet solid
lanthanum titanates: A review[J]. Chemistry of Materials, 2003, electrolyte of nominal composition Li 7La 3Zr 2O 12[J]. Solid State
15(21): 3974-3990. Ionics, 2012, 206: 28-32.
[8] JIAN Z L, HU Y S, JI X L, et al. NASICON-structured materials for [29] SUZUKI Y, KAMI K, WATANABE K, et al. Transparent cubic
energy storage[J]. Advanced Materials, 2017, 29(20): 1601925. garnet-type solid electrolyte of Al 2O 3-doped Li 7La 3Zr 2O 12[J]. Solid
[9] XU R C, ZHANG S Z, WANG X L, et al. Recent development of State Ionics, 2015, 278: 172-176.
all-solid-state lithium secondary batteries with sulfide inorganic [30] XIE H, GOODENOUGH J B, LI Y T. Li 1.2Zr 1.9Ca 0.1(PO 4) 3, a room-
electrolytes[J]. Chemistry-A European Journal, 2018, 24(23): 6007- temperature Li-ion solid electrolyte[J]. Journal of Power Sources,
6018. 2015, 196(18): 7760-7762.
[10] MURUGAN R, THANGADURAI V, WEPPNER W. Fast lithium ion [31] THANGADURAI V, HUGGINS R A, WEPPNER W. Use of simple
conduction in garnet-type Li 7La 3Zr 2O 12[J]. Angewandte Chemie ac technique to determine the ionic and electronic conductivities in
International Edition, 2007, 46(41): 7778-7781. pure and Fe-substituted SrSnO 3 perovskites[J]. Journal of Power
[11] VENKATARAMAN T, SUMALETHA N, DANA P. Garnet-type Sources, 2002, 108(1/2): 64-69.