Page 181 - 《精细化工》2020年第9期
P. 181

第 9 期                     张   颖,等:  冷烧结工艺制备石榴石固态电解质及其性能                                 ·1895·


            选取合适的压力至关重要,在本研究中冷烧结压力                                 solid-state fast Li ion conductors for Li batteries: Critical review[J].
                                                                   Chemical Society Reviews, 2014, 43(13): 4714-4727.
            为 510 MPa 时样品离子电导率较大。
                                                               [12]  DUAN H N, ZHENG H P, ZHOU Y, et al. Stability of garnet-type Li
                                                                   ion conductors: An overview[J]. Solid State Ionics, 2018, 318: 45-53.
            3   结论                                             [13]  MCOWEN D W, XU S M, GONG Y  H,  et al. 3D-Printing
                                                                   electrolytes for solid-state batteries[J]. Advanced Materials, 2018,
                                                                   30(18): 1707132.
                 采用冷烧结 工艺制备 了 Li 5.95 Al 0.35 La 3 Zr 2 O 12
                                                               [14]  LEE J M, KIM T, BAEK S W, et al. High lithium ion conductivity of
            石榴石固态电解质,在冷烧结工艺后采用后续热处                                 Li 7La 3Zr 2O 12  synthesized by solid state reaction[J]. Solid State
            理可使晶粒长大,改善离子传导性能。结果表明,                                 Ionics, 2014, 258: 13-17.
                                                               [15]  BAI L (白玲), ZHAO X  Y(赵兴宇), SHEN W P(沈卫平),  et al.
            石榴石固态电解质的晶体结构不随冷烧结时间和压                                 Spark plasma sintering technology and its application in preparing
            力的改变而改变。过长的冷烧结时间会导致样品开                                 eramics[J]. Materials Reports (材料导报), 2007, 21(4): 96-99.
                                                               [16]  BAEK S W, LEE J M, KIM T Y, et al. Garnet related lithium ion
            裂,在适宜的范围内(15~30 min)冷烧结时间对样                            conductor  processed by spark plasma sintering for all  solid state
            品的致密性和电导率影响可忽略不计,然而冷烧结                                 batteries[J]. Journal of Power Sources, 2014, 249: 197-206.
            时间过短对样品纯度的提高是不利的。随着冷烧                              [17]  GUO H Z,  BAKER  A, GUO J,  et al.  Protocol for ultralow-
                                                                   temperature ceramic sintering: An integration of nanotechnology and
            结压力的增加,样品的体积密度随之增大。当压力                                 the cold sintering process[J]. ACS Nano, 2016, 10(11): 10606-10614.
            增大到 510 MPa,可以获得具有较大体积密度的                          [18]  GUO J, BERBANO S S, GUO H Z, et al. Cold sintering process of
                                                                   composites: Bridging the processing temperature gap of ceramic and
            Li 5.95 Al 0.35 La 3 Zr 2 O 12 石榴石固态电解质,当冷烧结压          polymer materials[J]. Advanced Functional Materials, 2016, 26(39):
            力继续增大,样品的体积密度反而下降。冷烧结压                                 7115-7121.
                                                               [19]  FUNAHASHI S, GUO J, GUO H Z, et al. Demonstration of the cold
            力对样品离子电导率的影响与对体积密度的影响规                                 sintering process study for the densification and grain growth of ZnO
            律相同,在冷烧结压力为 510 MPa、温度为 200  ℃、                        ceramics[J]. Journal of the American Ceramic Society, 2017, 100(2):
                                                                   546-553.
            时间为 30 min 条件下离子电导率较大,为 2.66×
                                                               [20]  GUO H Z, GUO J, BAKER  A,  et al. Cold sintering process for
              –6
            10  S/cm,此时材料的晶界电阻较小。冷烧结工艺                             ZrO 2-based ceramics: Significantly enhanced densification evolution
            可以在较低温度下制备石榴石固态电解质材料,但                                 in yttria-doped ZrO 2[J]. Journal of the American Ceramic Society,
                                                                   2017, 100(2): 491-495.
            影响因素(如粉体粒度、液相体积、冷烧结压力、                             [21]  GUO  J,  GUO H Z,  HEIDARY D S  B,  et al. Semiconducting
            时间、后续热处理等)较多,应根据不同材料体系                                 properties of cold sintered V 2O 5 ceramics and co-sintered V 2O 5-PEDOT:
                                                                   PSS composites[J]. Journal of the European Ceramic Society, 2017,
            确定具体的工艺参数。                                             37(4): 1529-1534.
                                                               [22]  SEO J H, GUO J, GUO H Z, et al. Cold sintering of a Li-ion cathode:
            参考文献:                                                  LiFePO 4-composite with high volumetric capacity[J]. Ceramics
                                                                   International, 2017, 43(17): 15370-15374.
            [1]   TARASCON J M, ARMAND M. Issues and challenges facing
                 rechargeable lithium batteries[J]. Nature, 2001, 414(6861): 359-367.     [23]  BERBANO S S, GUO J, GUO H Z, et al. Cold sintering process of
            [2]   MANTHIRAM A, YU X W, WANG S F. Lithium battery chemistries   Li 1.5Al 0.5Ge 1.5(PO 4) 3 solid electrolyte[J]. Journal of the American
                 enabled by solid-state electrolytes[J]. Nature Reviews Materials,   Ceramic Society, 2017, 100(5): 2123-2135.
                 2017, 2(4): 1-16.                             [24]  LENG  H Y,  HUANG J J, NIE J Y,  et al. Cold sintering and ionic
            [3]   QUARTARONE E, MUSTARELLI P. Electrolytes for solid-state   conductivities of  Na 3.256Mg 0.128Zr 1.872Si 2PO 12  solid electrolytes[J].
                 lithium rechargeable batteries: Recent advances and perspectives[J].   Journal of Power Sources, 2018, 391: 170-179.
                 Chemical Society Reviews, 2011, 40(5): 2525-2540.     [25]  LIU Y B (刘彦博). The effect of doping on LLZO and the optimization
            [4]   MEESALA Y, JENA A, CHANG H, et al. Recent advancements in   of the Li/LLZO interface[D]. Shanghai: Shanghai Jiao Tong University
                 Li-ion conductors for all-solid-state Li-ion batteries[J]. ACS Energy   (上海交通大学), 2018.
                 Letters, 2017, 2(12): 2734-2751.              [26]  JIN Y, MCGINN  P J. Al-doped Li 7La 3Zr 2O 12  synthesized by a
            [5]   SCHNELL J,  GUNTHER T, KNOCHE T,  et al. All-solid-state   polymerized complex method[J]. Journal of Power Sources, 2011,
                 lithium-ion and lithium metal batteries-paving the way to large-scale   196(20): 8683-8687.
                 production[J]. Journal of Power Sources, 2018, 382: 160-175.     [27]  GEIGER C A, ALEKSEEV E, LAZIC B, et al. Crystal chemistry and
            [6]   ZHANG  Q Q, LIU K, DING F,  et al. Recent advances in  solid   stability of Li 7La 3Zr 2O 12 garnet: A fast lithium-ion conductor[J].
                 polymer  electrolytes for lithium batteries[J]. Nano Research, 2017,   Inorganic Chemistry, 2011, 50(3): 1089-1097.
                 10(12): 4139-4174.                            [28]  RANGASAMY E, WOLFENSTINE J, SAKAMOTO J. The role of
            [7]   STRAMARE S,  THANGADURAI  V, WEPPNER W. Lithium   Al and Li concentration  on the formation of cubic garnet solid
                 lanthanum titanates:   A review[J]. Chemistry of Materials, 2003,   electrolyte of nominal composition Li 7La 3Zr 2O 12[J]. Solid State
                 15(21): 3974-3990.                                Ionics, 2012, 206: 28-32.
            [8]   JIAN Z L, HU Y S, JI X L, et al. NASICON-structured materials for   [29]  SUZUKI Y, KAMI K,  WATANABE K,  et al. Transparent  cubic
                 energy storage[J]. Advanced Materials, 2017, 29(20): 1601925.     garnet-type solid electrolyte of Al 2O 3-doped Li 7La 3Zr 2O 12[J]. Solid
            [9]   XU R C, ZHANG S Z, WANG X L, et al. Recent development of   State Ionics, 2015, 278: 172-176.
                 all-solid-state lithium secondary batteries with sulfide inorganic   [30]  XIE H, GOODENOUGH J B, LI Y T. Li 1.2Zr 1.9Ca 0.1(PO 4) 3, a room-
                 electrolytes[J]. Chemistry-A European Journal, 2018, 24(23): 6007-   temperature Li-ion solid electrolyte[J]. Journal of Power Sources,
                 6018.                                             2015, 196(18): 7760-7762.
            [10]  MURUGAN R, THANGADURAI V, WEPPNER W. Fast lithium ion   [31]  THANGADURAI V, HUGGINS R A, WEPPNER W. Use of simple
                 conduction in garnet-type Li 7La 3Zr 2O 12[J]. Angewandte  Chemie   ac technique to determine the ionic and electronic conductivities in
                 International Edition, 2007, 46(41): 7778-7781.     pure and Fe-substituted SrSnO 3 perovskites[J]. Journal  of Power
            [11]  VENKATARAMAN T, SUMALETHA N,  DANA P. Garnet-type   Sources, 2002, 108(1/2): 64-69.
   176   177   178   179   180   181   182   183   184   185   186