Page 54 - 《精细化工》2020年第9期
P. 54

·1768·                            精细化工   FINE CHEMICALS                                 第 37 卷

            [14]  SCHUCHERT I U, TOIMIL MOLARS M E, DOBREV D,  et al.   Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy,
                 Electrochemical copper deposition in etched ion track membranes[J].   2019, 221: 117184.
                 Journal of the Electrochemical Society, 2003, 150: 189-194.     [35]  XIONG X H (熊旭华), HU Y Y (胡勇有), HONG X S (洪学森), et
            [15]  CHEN  C,  LOU  Z  S, CHEN  Q W. A  novel way for preparing Cu   al.  Study on bactericidal capability of silver nanoparticles to
                 nanowires[J]. Chemistry Letters, 2005, 34: 430-431.     Escherichia coil in water[J]. Industrial Water & Wastewater (工业用
            [16]  SUN J L (孙家林), SUN H S (孙红三), LIU W (刘伟), et al. Method   水与废水), 2015, 45(3): 39-43.
                 and apparatus for preparing metal nanostructured materials in solid   [36]  HUANG C L, FENG Y H, ZHANG X X, et al. Thermal conductivity
                 state environment: CN1522952A[P]. 2004-08-25.     prediction of a Cu circular nanowire[J]. Physica E: Low-dimension
            [17]  SUN J L (孙家林), CAO  Y (曹阳), YAO  H F (姚海飞),  et al.   Systems and Nanostructures, 2014, 58(4): 111-117.
                 Preparation method of silver single crystal nanowire  array  with   [37]  CHAUHAN R P, RANA P. Nickel ion induced modification in the
                 centimeter length: CN1709789A[P]. 2005-12-21.     electrical conductivity of Cu nanowires[J]. Radiation Measurements,
            [18]  BOOLCHAND P, BRESSER W J. Mobile silver  ions and glass   2015, 83: 43-46.
                 formation in solid electrolytes[J]. Nature, 2001, 410(6832): 1070-   [38]  XU D P, DONG J, ZHANG S, et al. Fractal theory study and SERS
                 1073.                                             effect of centimeter level of copper nanobranch detectors by solid-state
            [19]  SHI M L (史美伦). Solid electrolyte[M]. Chongqing:  Chongqing   ionics method[J]. Sensors and Actuators A Physical, 2018, 271:
                 Science and Technology Literature Press (科学技术文献出版社:  重  18-23.
                 庆分社), 1982.                                   [39]  XU D P, DONG Z M, SUN J L. Fabrication of copper nanowires by a
            [20]  CAO Y (曹阳). Preparation, characterization and properties of silver/   solid-state ionics method and their surface enhanced Raman scattering
                 copper nanostructures[D]. Beijing: Tsinghua University (清华大学),   effect[J]. Materials Letters, 2013, 92: 143-146.
                 2006.                                         [40]  ZHANG J H, LIU W, SUN J L, et al. Controlled synthesis of copper
            [21]  ZAMANI N, KESHAVARZ A, NADGARAN H. The effect of metal   nanostructures[J]. Materials Science and Engineering A (Structural
                 nano particle on optical absorption coefficient of multi-layer spherical   Materials: Properties, Microstructure and Processing), 2006, 433(1/2):
                 quantum dot[J]. Physica B: Condensed Matter, 2016, 490: 57-62.     257-260.
            [22]  MISRA S K, KIM  B, KOLMODIN N J, et al. A dual strategy for   [41]  SHI S, SUN J L, ZHANG J H, et al. A novel application of the CuI
                 sensing metals with a nano “pincer” scavenger for in vitro diagnostics   thin film for preparing thin copper nanowires[J]. Physica B, 2005,
                 and detection of liver diseases from blood  samples[J]. Colloids &   362(1/2/3/4): 231-235.
                 Surfaces B Biointerfaces, 2015, 126: 444-451.     [42]  ZHANG J H, SUN J L, LIU W, et al. Synthesis of copper nanowires
            [23]  MOSZNER F, CANCELLIERI C, CHIODI M, et al. Thermal stability   under a direct current electric field[J]. Nanotechnology,  2005, 16
                 of Cu/W nano-multilayers[J]. Acta Materialia, 2016, 107: 345-353.     (10): 2030-2032.
            [24]  CHANG G H, LUO Y L, LU W B, et al. Hydrothermal synthesis of   [43]  CHEN  L Y,  YU J S, FUJITA  T,  et al. Nanoporous copper with
                 ultra-highly concentrated, well-stable Ag nanoparticles and their   tunable nanoporosity for SERS applications[J]. Advanced Functional
                 application for enzymeless hydrogen  peroxide detection[J]. Journal   Materials, 2009, 19(8): 1221-1226.
                 of Nanoparticle Research, 2011, 13(7): 2689-2695.     [44]  DUAN J Y, ZHANG Q X, WANG Y L, et al. Facile synthesis and
            [25]  SONG J E, PHENRAT T, MARINAKOS S,  et al. Hydrophobic   formation mechanism of silver nanoplates with edge lengths of several
                 interactions increase attachment of gum Arabic- and PVP-coated Ag   micrometers[J]. Acta Physica-Chimica Sinica, 2009, 25(7): 1405-1408.
                 nanoparticles to hydrophobic surfaces[J]. Environmental Science &   [45]  GAO C B, LU Z D, LIU Y, et al. Highly stable silver nanoplates for
                 Technology, 2011, 45(14): 5988-5995.              surface plasmon resonance biosensing[J]. Angewandte Chemie, 2012,
            [26]  SEKHON J S, VERMA S S. Refractive index sensitivity analysis of   51(23): 5629-5633.
                 Ag, Au, and Cu nanoparticles[J]. Plasmonics, 2011, 6(2): 311-317.     [46]  LUIS M  LIZ-MARZAN. Nanometals: Formation and color[J].
            [27]  CAO Y, LIU W, SUN J L,  et al.  A technique for controlling the   Materials Today, 2004, 7(2): 26-31.
                 alignment of  silver nanowires  with an electric field[J].   [47]  XU D P, ZHANG S, YANG W, et al. Controlled growth of centimeter
                 Nanotechnology 2006, 17(9): 2378-2380.            level gold nanowires via a solid-state ionics method and their SERS
            [28]  ZHANG S, TIAN X L, YIN J, et al. Rapid, controllable growth of   effect[J]. Chemical Physics, 2018, 513(2018): 116-119.
                 silver  nanostructured surface-enhanced Raman scattering substrates   [48]  XU D P, KANG W G, YANG W, et al. Synthesis of centimeter level
                 for red blood cell detection[J]. Scientific Reports, 2016, 6(1): 24503.     AgCu alloy nanowires via a solid-state ionics method and their SERS
            [29]  SUN J L, ZHANG J H, LIU W, et al. Shape-controlled synthesis of   effect[J]. Journal of Alloys and Compounds, 2017, 725: 248-252.
                 silver nanostructures[J]. Nanotechnology, 2005, 16(10): 2412-2414.     [49]  TAO A, KIM F, HESS C, et al. Langmuir-blodgett silver nanowire
            [30]  XU D P,  DONG Z M, SUN J L. Fabrication of high performance   monolayers for molecular sensing using surface-enhanced Raman
                 surface enhanced Raman scattering substrates by a solid-state ionics   spectroscopy[J]. Nano Letters, 2003, 3(9): 1229-1233.
                 method[J]. Nanotechnology, 2012, 23(12): 125705.    [50]  XU D P, JIANG H Z, YANG W, et al. SERS effect of Rhodamine 6G
            [31]  ZHANG J H. Refit silver nanostructures using convergent electron   molecular probe on AgAu alloy nanowire arrays by a  solid-state
                 beam[J]. Chinese Physics Letters, 2007, 24(4): 1007-1009.     ionics method[J]. Physica E: Low-dimensional Systems and
            [32]  RAMAN  C V, KRISHNAN K S.  A new type  of secondary   Nanostructures, 2018, 102: 132-136.
                 radiation[J]. Nature, 1928, 121(3048): 501-502.     [51]  XU D P, YANG W, ZHANG S, et al. High surface roughness gold
            [33]  NIE S M, EMORY S R. Probing single  molecules and single   nanoparticle/centimeter level silver nanowire heterostructure detectors
                 nanoparticles by surface-enhanced Raman scattering[J]. Science,   for SERS application[J]. Sensors & Actuators A Physical, 2018, 279:
                 1997, 275(5303): 1102-1106.                       457-461.
            [34]  XU D P, KANG  W G,  ZHANG  S,  et al. Fractal theory and   [52]  XU D P, ZHANG S,  YANG W,  et al. Fabrication and  surface
                 controllable preparation of centimeter level silver nanowire arrays   enhanced Raman scattering effect of centimeter level AgCuAu composite
                 and their application in melamine detection as SERS substrates[J].   nanowires[J]. Optical Materials, 2017, 72: 697-701.
   49   50   51   52   53   54   55   56   57   58   59