Page 54 - 《精细化工》2020年第9期
P. 54
·1768· 精细化工 FINE CHEMICALS 第 37 卷
[14] SCHUCHERT I U, TOIMIL MOLARS M E, DOBREV D, et al. Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy,
Electrochemical copper deposition in etched ion track membranes[J]. 2019, 221: 117184.
Journal of the Electrochemical Society, 2003, 150: 189-194. [35] XIONG X H (熊旭华), HU Y Y (胡勇有), HONG X S (洪学森), et
[15] CHEN C, LOU Z S, CHEN Q W. A novel way for preparing Cu al. Study on bactericidal capability of silver nanoparticles to
nanowires[J]. Chemistry Letters, 2005, 34: 430-431. Escherichia coil in water[J]. Industrial Water & Wastewater (工业用
[16] SUN J L (孙家林), SUN H S (孙红三), LIU W (刘伟), et al. Method 水与废水), 2015, 45(3): 39-43.
and apparatus for preparing metal nanostructured materials in solid [36] HUANG C L, FENG Y H, ZHANG X X, et al. Thermal conductivity
state environment: CN1522952A[P]. 2004-08-25. prediction of a Cu circular nanowire[J]. Physica E: Low-dimension
[17] SUN J L (孙家林), CAO Y (曹阳), YAO H F (姚海飞), et al. Systems and Nanostructures, 2014, 58(4): 111-117.
Preparation method of silver single crystal nanowire array with [37] CHAUHAN R P, RANA P. Nickel ion induced modification in the
centimeter length: CN1709789A[P]. 2005-12-21. electrical conductivity of Cu nanowires[J]. Radiation Measurements,
[18] BOOLCHAND P, BRESSER W J. Mobile silver ions and glass 2015, 83: 43-46.
formation in solid electrolytes[J]. Nature, 2001, 410(6832): 1070- [38] XU D P, DONG J, ZHANG S, et al. Fractal theory study and SERS
1073. effect of centimeter level of copper nanobranch detectors by solid-state
[19] SHI M L (史美伦). Solid electrolyte[M]. Chongqing: Chongqing ionics method[J]. Sensors and Actuators A Physical, 2018, 271:
Science and Technology Literature Press (科学技术文献出版社: 重 18-23.
庆分社), 1982. [39] XU D P, DONG Z M, SUN J L. Fabrication of copper nanowires by a
[20] CAO Y (曹阳). Preparation, characterization and properties of silver/ solid-state ionics method and their surface enhanced Raman scattering
copper nanostructures[D]. Beijing: Tsinghua University (清华大学), effect[J]. Materials Letters, 2013, 92: 143-146.
2006. [40] ZHANG J H, LIU W, SUN J L, et al. Controlled synthesis of copper
[21] ZAMANI N, KESHAVARZ A, NADGARAN H. The effect of metal nanostructures[J]. Materials Science and Engineering A (Structural
nano particle on optical absorption coefficient of multi-layer spherical Materials: Properties, Microstructure and Processing), 2006, 433(1/2):
quantum dot[J]. Physica B: Condensed Matter, 2016, 490: 57-62. 257-260.
[22] MISRA S K, KIM B, KOLMODIN N J, et al. A dual strategy for [41] SHI S, SUN J L, ZHANG J H, et al. A novel application of the CuI
sensing metals with a nano “pincer” scavenger for in vitro diagnostics thin film for preparing thin copper nanowires[J]. Physica B, 2005,
and detection of liver diseases from blood samples[J]. Colloids & 362(1/2/3/4): 231-235.
Surfaces B Biointerfaces, 2015, 126: 444-451. [42] ZHANG J H, SUN J L, LIU W, et al. Synthesis of copper nanowires
[23] MOSZNER F, CANCELLIERI C, CHIODI M, et al. Thermal stability under a direct current electric field[J]. Nanotechnology, 2005, 16
of Cu/W nano-multilayers[J]. Acta Materialia, 2016, 107: 345-353. (10): 2030-2032.
[24] CHANG G H, LUO Y L, LU W B, et al. Hydrothermal synthesis of [43] CHEN L Y, YU J S, FUJITA T, et al. Nanoporous copper with
ultra-highly concentrated, well-stable Ag nanoparticles and their tunable nanoporosity for SERS applications[J]. Advanced Functional
application for enzymeless hydrogen peroxide detection[J]. Journal Materials, 2009, 19(8): 1221-1226.
of Nanoparticle Research, 2011, 13(7): 2689-2695. [44] DUAN J Y, ZHANG Q X, WANG Y L, et al. Facile synthesis and
[25] SONG J E, PHENRAT T, MARINAKOS S, et al. Hydrophobic formation mechanism of silver nanoplates with edge lengths of several
interactions increase attachment of gum Arabic- and PVP-coated Ag micrometers[J]. Acta Physica-Chimica Sinica, 2009, 25(7): 1405-1408.
nanoparticles to hydrophobic surfaces[J]. Environmental Science & [45] GAO C B, LU Z D, LIU Y, et al. Highly stable silver nanoplates for
Technology, 2011, 45(14): 5988-5995. surface plasmon resonance biosensing[J]. Angewandte Chemie, 2012,
[26] SEKHON J S, VERMA S S. Refractive index sensitivity analysis of 51(23): 5629-5633.
Ag, Au, and Cu nanoparticles[J]. Plasmonics, 2011, 6(2): 311-317. [46] LUIS M LIZ-MARZAN. Nanometals: Formation and color[J].
[27] CAO Y, LIU W, SUN J L, et al. A technique for controlling the Materials Today, 2004, 7(2): 26-31.
alignment of silver nanowires with an electric field[J]. [47] XU D P, ZHANG S, YANG W, et al. Controlled growth of centimeter
Nanotechnology 2006, 17(9): 2378-2380. level gold nanowires via a solid-state ionics method and their SERS
[28] ZHANG S, TIAN X L, YIN J, et al. Rapid, controllable growth of effect[J]. Chemical Physics, 2018, 513(2018): 116-119.
silver nanostructured surface-enhanced Raman scattering substrates [48] XU D P, KANG W G, YANG W, et al. Synthesis of centimeter level
for red blood cell detection[J]. Scientific Reports, 2016, 6(1): 24503. AgCu alloy nanowires via a solid-state ionics method and their SERS
[29] SUN J L, ZHANG J H, LIU W, et al. Shape-controlled synthesis of effect[J]. Journal of Alloys and Compounds, 2017, 725: 248-252.
silver nanostructures[J]. Nanotechnology, 2005, 16(10): 2412-2414. [49] TAO A, KIM F, HESS C, et al. Langmuir-blodgett silver nanowire
[30] XU D P, DONG Z M, SUN J L. Fabrication of high performance monolayers for molecular sensing using surface-enhanced Raman
surface enhanced Raman scattering substrates by a solid-state ionics spectroscopy[J]. Nano Letters, 2003, 3(9): 1229-1233.
method[J]. Nanotechnology, 2012, 23(12): 125705. [50] XU D P, JIANG H Z, YANG W, et al. SERS effect of Rhodamine 6G
[31] ZHANG J H. Refit silver nanostructures using convergent electron molecular probe on AgAu alloy nanowire arrays by a solid-state
beam[J]. Chinese Physics Letters, 2007, 24(4): 1007-1009. ionics method[J]. Physica E: Low-dimensional Systems and
[32] RAMAN C V, KRISHNAN K S. A new type of secondary Nanostructures, 2018, 102: 132-136.
radiation[J]. Nature, 1928, 121(3048): 501-502. [51] XU D P, YANG W, ZHANG S, et al. High surface roughness gold
[33] NIE S M, EMORY S R. Probing single molecules and single nanoparticle/centimeter level silver nanowire heterostructure detectors
nanoparticles by surface-enhanced Raman scattering[J]. Science, for SERS application[J]. Sensors & Actuators A Physical, 2018, 279:
1997, 275(5303): 1102-1106. 457-461.
[34] XU D P, KANG W G, ZHANG S, et al. Fractal theory and [52] XU D P, ZHANG S, YANG W, et al. Fabrication and surface
controllable preparation of centimeter level silver nanowire arrays enhanced Raman scattering effect of centimeter level AgCuAu composite
and their application in melamine detection as SERS substrates[J]. nanowires[J]. Optical Materials, 2017, 72: 697-701.