Page 71 - 《精细化工》2020年第9期
P. 71
第 9 期 徐 众,等: 有机酸/碳纳米管复合相变材料的制备及性能 ·1785·
比纯的有机酸提高 2.7~4.5 倍;材料潜热测试表明, storage capability[J]. Chemical Engineering Journal, 2020, 379(1):
纯有机酸中添加 MWCNT 后,吸热潜热分别降为纯 122373.
[11] YU C, YOU J R, SONG Y S, et al. Encapsulated phase change
LA、MA、PA 和 SA 的 70.1%、96.0%、76.7%和 71.8%,
material embedded by graphene powders for smart and flexible
下降比较大,因此,需要改善有机酸和 MWCNT 的
thermal response[J]. Fibers and Polymers, 2019, 20(3): 545-554.
混合方式,提升均匀度和相变潜热值。 [12] JIANG L, LEI Y, LIU Q F, et al. Facile preparation of polyethylene
(5)复合材料电阻率测试结果显示,压力在 glycol/wood-flour composites as form-stable phase change materials
1~11 MPa 之间变化时,纯 MWCNT 的电阻率在 for thermal energy storage[J]. Journal of Thermal Analysis and
Calorimetry, 2020, 139(1): 137-146.
0.06~ 0.31 Ω·cm 之间,复合材料中电阻率最大和最
[13] SHENG N, NOMURA T, ZHU C Y, et al. Cotton-derived carbon
小的分别是 MA/MWCNT 和 LA/MWCNT,电阻率
sponge as support for form-stabilized composite phase change materials
分别为 5.50~23.40 和 1.44~5.98 Ω·cm;指数拟合表 with enhanced thermal conductivity[J]. Solar Energy Materials and
明,材料电阻率与压力的相关性很高。后续可进一 Solar Cells, 2019, 192(4): 8-15.
步探究几种复合材料混合后相变潜热、导热率和电 [14] MA L Y, WANG Q W, LI L P. Delignified wood/capric acid-palmitic
阻率的变化。 acid mixture stable-form phase change material for thermal
storage[J]. Solar Energy Materials and Solar Cells, 2019, 194(1):
参考文献: 215-221.
[15] LYU P Z, DING M Y, LIU C Z, et al. Experimental investigation on
[1] TONG X, LI N Q, ZENG M, et al. Organic phase change materials
thermal properties and thermal performance enhancement of
confined in carbon-based materials for thermal properties enhancement:
octadecanol/expanded perlite form stable phase change materials for
Recent advancement and challenges[J]. Renewable and Sustainable
efficient thermal energy storage[J]. Renewable Energy, 2019, 131(2):
Energy Reviews, 2019, 108(10): 398-422.
911-922.
[2] UMAIR M M, ZHANG Y, IQBAL K, et al. Novel strategies and
[16] YANG H, LIU Y, KONG X F, et al. Preparation and hygrothermal
supporting materials applied to shape-stabilize organic phase change
performance of composite phase change material wallboard with
materials for thermal energy storage-A review[J]. Applied Energy,
humidity control based on expanded perlite/diatomite/paraffin[J].
2019, 235(1): 846-873.
Journal of Central South University, 2018, 25(10): 2387-2398.
[3] YANG G, YI Y J, LEE J W, et al. Carbon-filled organic phase-change
[17] LIU P, GU X B, BIAN L, et al. Capric acid/intercalated diatomite as
materials for thermal energy storage: A review[J]. Molecules, 2019, form-stable composite phase change material for thermal energy
24(11): 2-17.
storage[J]. Journal of Thermal Analysis and Calorimetry, 2019,
[4] RAJ C R, SURESH S, BHAVSAR R R, et al. Recent developments
138(1): 359-368.
in thermo-physical property enhancement and applications of solid
[18] LIN Y X, ZHU C Q, FANG G Y. Synthesis and properties of
solid phase change materials[J]. Journal of Thermal Analysis and microencapsulated stearic acid/silica composites with graphene oxide
Calorimetry, 2020, 139(5): 3023-3049. for improving thermal conductivity as novel solar thermal storage
[5] LI Y T, YAN H, WANG Q, et al. Structure and thermal properties of materials[J]. Solar Energy Materials and Solar Cells, 2019, 189(1):
decanoic acid/expanded graphite composite phase change 197-205.
materials[J]. Journal of Thermal Analysis and Calorimetry, 2017, [19] FU Z J, DAI L, YI Y, et al. Structure and thermal properties of stearic
128(3): 1313-1326 acid/silica composites as form-stable phase change materials[J].
[6] ZOU D Q, LIU X S, HE R J, et al. Preparation of a novel composite Journal of Sol-Gel Science and Technology, 2018, 87(2): 419-426.
phase change material (PCM) and its locally enhanced heat transfer [20] GUARDIA C, SCHICCHI D S, CAGGIANO A, et al. On the
for power battery module[J]. Energy Conversion and Management, capillary water absorption of cement-lime mortars containing phase
2019, 180(2): 1196-1202. change materials: Experiments and simulations[J]. Building Simulation,
[7] ZHAO Y Q, JIN L, ZOU B Y, et al. Expanded graphite-paraffin 2020, 13(1): 19-31.
composite phase change material: Effect of particle size on the [21] SANG G C, ZHANG Y K, FAN M, et al. Thermo-mechanical
composite structure and properties[J]. Applied Thermal Engineering, properties of compaction molded cement-based composite containing
2020, 171(8): 115015. a high mass fraction of phase change material for thermal energy
[8] YUAN P, ZHANG P, LIANG T, et al. Effects of functionalization on storage[J]. Composites, Part A: Applied Science and Manufacturing,
energy storage properties and thermal conductivity of graphene/ 2020, 128(1): 105657.
n-octadecane composite phase change materials[J]. Energy Materials, [22] CUNHA S, SILVA M, AGUIAR J. Behavior of cementitious mortars
2019, 54(2): 1488-1501. with direct incorporation of non-encapsulated phase change material
[9] LI C C, ZHANG B, XIE B S, et al. Stearic acid/expanded graphite as after severe temperature exposure[J]. Construction and Building
a composite phase change thermal energy storage material for Materials, 2020, 230(1): 117011.
tankless solar water heater[J]. Sustainable Cities and Society, 2019, [23] LI M, SHI J B. Review on micropore grade inorganic porous medium
44(1): 458-464. based form stable composite phase change materials: Preparation,
[10] WU H Y, LI S T, SHAO Y W, et al. Melamine foam/reduced performance improvement and effects on the properties of cement
graphene oxide supported form-stable phase change materials with mortar[J]. Construction and Building Materials, 2019, 194(1): 287-310.
simultaneous shape memory property and light-to-thermal energy [24] SARAC E G, ÖNER E, KAHRAMAN M V. Microencapsulated