Page 98 - 《精细化工》2020年第9期
P. 98

第 37 卷第 9 期                             精   细   化   工                                  Vol.37, No.9
             202 0 年 9 月                             FINE CHEMICALS                                 Sept.  2020


              功能材料
               高强度耐溶胀仿软骨 PVA/CS 水凝胶的合成及性能



                                                                        1
                                                雒春辉       1,2 ,赵宇斐
                 (1.  北方民族大学  化学与化学工程学院,宁夏  银川  750021;2.  北方民族大学  国家民委化工技术基础
                 重点实验室,宁夏  银川  750021)

                 摘要:利用冻融循环并浸泡柠檬酸钠的方法,制备了聚乙烯醇/壳聚糖(PVA/CS)复合水凝胶。通过 FTIR、XRD,
                 DSC 和 SEM 表征了其结构和形貌,并测试了其机械性能。结果表明,PVA 单网络水凝胶网孔尺寸在 1.5~8.2 μm,
                 自由水含量为 76.2%,有效交联密度为 0.0288 mol/L,抗拉和抗压强度仅为 0.2 和 1.4 MPa。而复合水凝胶由于
                 氢键与离子键的协同交联作用,其网孔尺寸和自由水含量分别降低至 1.5  μm 和 1.4%,有效交联密度提高至
                 0.4210 mol/L,抗拉和抗压强度分别为 9.3 和 16.6 MPa。同时,该水凝胶还具有优异的抗疲劳与耐溶胀特性,连
                 续压缩 10 次后水凝胶的抗压强度和韧性分别为初始值的 88.1%和 84.3%,在去离子水中溶胀平衡后的抗拉强度
                 高达 4.3 MPa。
                 关键词:水凝胶;聚乙烯醇;壳聚糖;耐溶胀;仿软骨;功能材料
                 中图分类号:TQ316.6+2;O636.1      文献标识码:A      文章编号:1003-5214 (2020) 09-1812-07


                       Fabrication and properties of tough and anti-swelling polyvinyl
                                      alcohol/chitosan composite hydrogels


                                                           1,2
                                                                          1
                                               LUO Chunhui , ZHAO Yufei
                 (1.  College of Chemistry and Chemical Engineering, North Minzu University, Yinchuan  750021,  Ningxia, China;
                 2. Key Laboratory of Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University,
                 Yinchuan 750021, Ningxia, China)


                 Abstract: Polyvinyl alcohol/chitosan (PVA/CS) composite hydrogels  were prepared by freeze-thaw and
                 soaking sodium citrate (Na 3Cit) aqueous solution. The structures and morphologies were characterized by
                 FTIR, XRD, DSC and SEM, and the mechanical properties were tested. The results showed that PVA single
                 network hydrogel had a mesh size between 1.5 and 8.2 μm, free water content (FW) of 76.2% and effective
                 cross-linking density (v 0) of 0.0288 mol/L. The tensile strength and compressive strength were only 0.2 and
                 1.4 MPa. After introducing CS into PVA single network and soaking Na 3Cit, the mesh size and FW of the
                 prepared PVA/CS composite hydrogel decreased to 1.5 μm and 1.4%, and the v 0 increased to 0.4210 mol/L.
                 While the tensile strength and compressive strength were 9.3 and 16.6  MPa,  respectively.  This was
                 attributed to the synergistic cross-linking of hydrogen bonds and ionic bonds of composite hydrogels. At the
                 same time, the composite hydrogel exhibited excellent anti-fatigue and swelling-resistant properties. The
                 compressive strength and toughness of the composite hydrogel after 10 successive compression tests were
                 88.1% and  84.3% of their  original values. Furthermore, the tensile strength  after reaching a
                 swell-equilibrium in deionized water was 4.3 MPa.
                 Key words:  hydrogel; polyvinyl alcohol; chitosan; swelling-resistance; artificial cartilage; functional
                 materials


                 膝关节和软骨是人体重要的组织,由于缺乏自                          法 [1-2] 。水凝胶与软骨具有相似的三维网络结构和类
                                                                                                    [3]
            愈性,软骨组织工程已成为修复软骨缺损的重要方                             生物环境,被誉为最理想的软骨替代材料 。然而,


                 收稿日期:2020-03-08;  定用日期:2020-05-07; DOI: 10.13550/j.jxhg.20200176
                 基金项目:北方民族大学重点科研项目(2019KJ14);国家自然科学基金(21464001);“宁夏低品味资源高值化利用人才小高地”资助
                 作者简介:雒春辉(1982—),男,副教授,E-mail:luochunhui@iccas.ac.cn。
   93   94   95   96   97   98   99   100   101   102   103