Page 17 - 《精细化工》2021年第1期
P. 17
第 1 期 郑琳姗,等: 微生物燃料电池技术及其影响因素研究进展 ·7·
PVDF-g-PSSA)复合质子交换膜。图 6a~c 为在 MFC 松散,性能更佳。当 SGO@SiO 2 的添加量为 1.0%(指
中运行 1 个月后 PVDF-g-PSSA、SGO/PVDF-g-PSSA SGO@SiO 2 质量与 PVDF-g-PSSA 质量的百分比)
和 SGO@SiO 2 /PVDF-g-PSSA 膜的结垢表面的 SEM 时,离子交换容量达到 1.6 meq/g,质子传导率为
照片。由图 6a 和 b 可见,污染物致密,而图 6c 可 0.078 S/cm,复合膜的防污能力变得更强。使用
见,污染物比较松散。表面污染物可抑制质子传递 SGO@SiO 2/ PVDF-g-PSSA 膜的微生物燃料电池功
2
2
和液体运动,降低 MFC 的性能。因此,SGO@SiO 2 / 率密度(185 mW/m )比 Nafion-117(132 mW/m )
PVDF-g-PSSA 膜吸附的污染物较少,且污染物层较 高,COD 去除率为 75%。
图 6 PVDF-g-PSSA(a)、SGO/PVDF-g-PSSA(b)和 SGO@SiO 2 /PVDF-g-PSSA(c)的 SEM 图 [55]
Fig. 6 SEM images of composite materials PVDF-g-PSSA (a), SGO/PVDF-g-PSSA (b) and SGO@SiO 2 /PVDF-g-PSSA (c) [55]
3 结束语及展望 anodes based on stainless steel fiber felt for high-performance
microbial fuel cells[J]. Journal of Power Sources, 2014, 258(15):
204-209.
MFC 作为同步废水降解与产电的绿色能源技 [4] TUNC C, AYKUT K, VILDAN E A, et al. Efficacy of microbial fuel
术,具有大规模应用于污水处理的潜力,但产电效 cells for sensing of cocaine metabolites in urine-based wastewater[J].
Journal of Power Sources, 2019, 438: 1-7.
率低是限制 MFC 实际应用的主要因素。通过优化 [5] AHMED Y R, ZAINAB Z I. Polarization model of microbial fuel
cell for treatment of actual potato chips processing wastewater
MFC 的系统组成,如电极材料、产电微生物、营 associated with power generation[J]. Journal of Electroanalytical
养物质、构型及电子受体等,可显著提升 MFC 的产 Chemistry, 2019, 836: 176-181.
[6] CHOI S. Microscale microbial fuel cells: Advances and challenges[J].
电性能,未来 MFC 的研究应集中在以下几方面: Biosensors & Bioelectronics, 2015, 69: 8-25.
(1)进一步优化 MFC 的构型以降低大规模 MFC [7] DO M H, NGO H H, GUO W S, et al. Challenges in the application
of microbial fuel cells to wastewater treatment and energy production:
的过电位,构建新型 MFC 以提升 MFC 的产电性能; A mini review[J]. Science of the Total Environment, 2018, 639:
(2)阳极材料的改善可以有效提高电子传递效率, 910-920.
[8] SUN C Y (孙彩玉), LI L X (李立欣), WANG J (王晶), et al.
有利于生物膜的形成,寻找有效的改性方法和开发 Performance study of organic wastewater and heavy metal wastewater
新材料是今后研究的方向;(3)阴极材料的高比表 treatment by dual-chamber microbial fuel cell[J]. Technology of
Water Treatment (水处理技术), 2019, 45(8): 99-102.
面积和孔隙率有利于氧气的扩散和质子的传递,增 [9] LI X (李雪), WANG L (王琳), WANG L (王丽). Study on the
performance of microbial fuel cell-constructed wetland for wastewater
大阴极的比表面积可有效改善产电效率。需研发出 treatment and simultaneous electricity generation[J]. Technology of
低成本的阴极材料,特别是非 Pt 材料;(4)需要 Water Treatment (水处理技术), 2018, 44(2): 109-114.
[10] TAN Y C, KHARKWAL S, CHEW K K W, et al. Enhancing the
质子传导性强和低成本的 PEM,运用纳米技术制作 robustness of microbial fuel cell sensor for continuous copper(Ⅱ)
具有理想传导性能和低成本优势的新型膜材料。 detection against organic strength fluctuations by acetate and glucose
addition[J]. Bioresource Technology, 2018, 259: 357-364.
随着 MFC 技术的逐渐成熟与发展,MFC 技术 [11] YE Y Y, NGO H H, GUO W S, et al. Effect of organic loading rate
不仅可用于污水处理及能源回收,还可应用于生物 on the recovery of nutrients and energy in a dual-chamber microbial
fuel cell[J]. Bioresource Technology, 2019, 281: 367-373.
传感器监测污水指标;修复地表水及土壤;作为海 [12] RAHMAN A, BORHAN M S, RAHMAN S. Evaluation of microbial
上发电站解决远海能源问题;以及作为可穿戴电源, fuel cell (MFC) for bioelectricity generation and pollutants removal
from sugar beet processing wastewater (SBPW)[J]. Water Science &
提升士兵作战能力也是未来的研究方向。 Technology, 2017, 77(2): 387-397.
[13] HWANG J H, KIM K Y, RESURRECCION E P, et al. Surfactant
参考文献: addition to enhance bioavailability of bilge water in single chamber
microbial fuel cells (MFCs)[J]. Journal of Hazardous Materials,
[1] AZHAHAM P S, THANGAVEL M, GARLAPATI D, et al. Biofuel 2019, 368: 732-738.
policy in India: A review of policy barriers in sustainable marketing [14] REN Y P, CHEN J L, LI X F, et al. Enhanced bioelectricity
of biofuel[J]. Journal of Cleaner Production, 2018, 193: 734-747. generation of air-cathode buffer-free microbial fuel cells through
[2] SANTORO C, ARBIZZANI C, ERABLE B, et al. Microbial fuel short-term anolyte pH adjustment[J]. Bioelectrochemistry, 2018, 120:
cells: From fundamentals to applications. A review[J]. Journal of 145-149.
Power Sources, 2017, 356: 225-244. [15] ESTRADA-ARRIAGA E B, HERNÁNDEZ-ROMANO J, GARCÍA-
[3] HOU J X, LIU Z L, YANG S Q, et al. Three-dimensional macroporous SÁNCHEZ L, et al. Domestic wastewater treatment and power