Page 79 - 《精细化工》2021年第1期
P. 79
第 1 期 伊志豪,等: 气相中氰化氢消除研究进展 ·69·
electrochemical sensors[D]. Beijing: Institute of NBC Defense (陆军 degradation at high temperatures and pressures[J]. Environmental
防化学院), 2019. Science and Technology, 2013, 47(3): 1542-1549.
[3] MARRS T C, MAYNARD R L, SIDELL F R. Book review: [23] JIANG L L (姜莉莉), XUE W P (薛文平), MA H C (马红超), et al.
Chemical warfare agents toxicology and treatment[J]. Journal of Treatment of cyanide wastewater with pressurized hydrolysis[J].
Applied Toxicology, 1997, 17(1): 93-93. Environmental Science and Technology (环境科学与技术), 2008,
[4] ZHANG J J (张静静). Research for the defense against CO and 31(12): 140-144.
cyanide over flower-like ceria based materials[D]. Beijing: Institute [24] LAN X H (兰馨辉), YANG C (杨超), PAN Z H (潘祖鸿), et al.
of NBC Defense (陆军防化学院), 2018. Experimental study on pressurized hydrolysis treatment of certain
[5] YE M J (叶明杰). Treatment of cyanide containing waste gas from cyanide tailings[J]. Gold (黄金), 2019, 40(2): 69-72.
the carbonization process for the manufacture of carbon fiber[D]. [25] LIU X (刘霄), AN Y L (安艳玲), LIU D F (刘定富). Optimization of
Hangzhou: Zhejiang University (浙江大学), 2016. process parameters for treatment of cyanide waste liquid by alkaline
[6] KARLSSON H L. Ammonia, nitrous oxide and hydrogen cyanide chlorination[J]. Environmental Pollution and Control (环境污染与防
emissions from five passenger vehicles[J]. Science of the Total 治), 2015, 6(6): 1-6.
Environment, 2004, 334/335: 125-132. [26] DENG P (邓嫔). Tretment of high-cyanide-containing wastewater by
[7] ZHANG K, WANG Z Y, FANG W X, et al. High-temperature three times alkaline chlorination[J]. Hunan Nonferrous Metals (湖南
pyrolysis behavior of a bituminous coal in a drop tube furnace and 有色金属), 2015, 31(2): 54-56.
further characterization of the resultant char[J]. Journal of Analytical [27] WANG Y (王洋), WANG B S (王宝山), GAO H J (高慧娟), et al.
and Applied Pyrolysis, 2019, 137: 163-170. Treatment of cyanide-containing wastewater from a gold mine by
[8] YUAN S, ZHOU Z J, LI J, et al. HCN and NH 3 released from alkaline chlorination process[J]. China Nonferrous Metallurgy (中国
biomass and soybean cake under rapid pyrolysis[J]. Energy and 有色冶金), 2020, 2(1): 69-72.
Fuels, 2010, 24(11): 6166-6171. [28] LI Y F (李亚峰), LIU J J (刘济嘉). Experiments and mathematical
[9] ZENGEL D, KOCH P, TORKASHVAND H, et al. Emission of toxic simulation on ammonia removal in treating salt chemical wastewater
HCN during NO x removal by ammonia SCR in the exhaust of by the hydrolysis acidification-BAF method[J]. Journal of Shenyang
lean-burn natural gas engines[J]. Angewandte Chemie International Jianzhu University (沈阳建筑大学学报), 2016, 32(1): 162-169.
Edition, 2020, 59(34): 14423-14428. [29] LI C B (李成彬), GONG C L (巩春龙), ZHANG G P (张谷平).
[10] HADI B, AZIZ H Y, MITRA M. Ni, Pd, and Pt-embedded graphitic Research progress of biotreatment of cyanide-containing
carbon nitrides as excellent adsorbents for HCN removal: A DFT wastewater[J]. Gold (黄金), 2013, 34(11): 61-65.
study[J]. Applied Surface Science, 2018, 456: 882-889. [30] LI X P, ZHONG H, ZHOU L. Research progress of cyanide-
[11] SONG Z X, ZHANG Q L, NING P, et al. Catalytic hydrolysis of containing wastewater treatment[J]. Journal of Chemical Industry
HCN on ZSM-5 modified by Fe or Nb for HCN removal: Surface and Engineering, 2012, 33(2): 17-22.
species and performance[J]. RSC Advances, 2016, 6(112): 111389- [31] REN X J, LI Y F, ZHAO G H. Progress in the study of the treatment
111397. of cyanide-containing wastewater from industries[J]. Industrial Water
[12] ZHANG F M (张奉民), LI K X (李开喜), LYU C X (吕春祥), et al. Treatment, 2009, 29(8): 1-4.
Removal methods of hydrogen cyanide[J]. New Carbon Materials [32] CHEN J J, WANG Q, PAN J F, et al. Study on catalytic combustion
(新型炭材料), 2003, 18(2): 151-157. characteristics of hydrogen inside micro scaled tube[J]. Advanced
[13] CHEN G R (陈冠荣). Encyclopedia chemical technics[M]. Beijing: Materials Research, 2011, 354: 114-118.
Chemical Industry Press (化学工业出版社), 1997, 13: 143-161. [33] GLARBORG P, MARSHALL P. Importance of the hydrogen
[14] AKCIL A, MUDDER T. Microbial destruction of cyanide wastes in isocyanide isomer in modeling hydrogen cyanide oxidation in
gold mining: Process review[J]. Biotechnology Letters, 2003, 25(6): combustion[J]. Applied Catalysis, 2017, 19(2): 375-385.
445-450. [34] ANCA-COUCE A, SOMMERSACHER P, EVIC N, et al.
[15] GURBUZ F, CIFTCI H, AKCIL A. Biodegradation of cyanide Experiments and modelling of NO x precursors release (NH 3 and
containing effluents by scenedesmus obliquus[J]. Journal of HCN) in fixed-bed biomass combustion conditions[J]. Fuel, 2018,
Hazardous Materials, 2009, 162(1): 74-79. 222: 529-537.
[16] WANG L P, WEN Y J, LU J S, et al. Application of ozone and [35] GIMENEZ-LOPEZ J, MILLERA A, BILBAO R. HCN oxidation in
membrane coupled technology for cyanide refining grinding an O 2/CO 2 atmosphere: An experimental and kinetic modeling
wastewater treatment[J]. Technology of Water Treatment, 2019, study[J]. Combustion and Flame, 2010, 157(2): 267-276.
45(4): 128-130. [36] ARANI B O, FROUZAKIS C E, MANTZARAS J, et al. Direct
[17] LI Y (李雅), LIU C M (刘晨明), SHI S Y (石绍渊), et al. numerical simulation of turbulent channel-flow catalytic combustion:
Application of membrane absorption process in treatment of cyanide Effects of reynolds number and catalytic reactivity[J]. Combustion
waste water[J]. Gold (黄金), 2017, 38(3): 71-85. and Flame, 2018, 187: 52-66.
[18] LI Z K, ZHENG Y, WANG X Y, et al. Application of electrodialysis [37] ZHANG R D, LIU N, LEI Z G, et al. Selective transformation of
to remove copper and cyanide from simulated and real gold mine various nitrogen-containing exhaust gases toward N 2 over zeolite
effluents[J]. RSC Advances, 2015, 5(26): 19807-19817. catalysts[J]. Chemical Reviews, 2016. 116(6): 3658-3721.
[19] ZHENG Y, LI Z K, WANG X Y, et al. The treatment of cyanide from [38] ZHANG F M (张奉民), QIAN G H (钱桂海), LI K X (李开喜), et
gold mine effluent by a novel five-compartment electrodialysis[J]. al. Study on catalytic combustion of waste hydrogen cyanide[J].
Electrochimica Acta, 2015, 169: 150-158. China Synthetic Fiber Industry (合成纤维工业), 2004, 27(2): 27-28.
[20] LI H T (李慧婷). The study on electrochemical oxidation processes [39] TAN H Z, WANG X B, WANG C L. Characteristics of HCN removal
applied in industrial wastewater treatment[D]. Jilin: Jilin University using CaO at high temperatures[J]. Energy Fuels, 2009, 23(3):
(吉林大学), 2011. 1545-1550.
[21] XU Z M (徐忠敏), WENG Z P (翁占平), LI J J (李俊杰), et al. [40] LIU N, YUAN X N, CHEN B H, et al. Selective catalytic
Experimental study on the semi-industrial treatment of cyanide combustion of hydrogen cyanide over metal modified zeolite
containing wastewater by catalytic oxidation electrolysis-Fenton catalysts: From experiment to theory[J]. Catalysis Today, 2017, 297:
complex precipitation method[J]. Gold (黄金), 2018, 39(4): 71-74. 201-210.
[22] OULEGO P, LACA A, DIAZ M. Kinetics and pathways of cyanide [41] SUN Q (孙青). Preparation of nickel-based catalysts and their