Page 79 - 《精细化工》2021年第1期
P. 79

第 1 期                           伊志豪,等:  气相中氰化氢消除研究进展                                      ·69·


                 electrochemical sensors[D]. Beijing: Institute of NBC Defense (陆军  degradation at high temperatures and pressures[J]. Environmental
                 防化学院), 2019.                                      Science and Technology, 2013, 47(3): 1542-1549.
            [3]   MARRS T C, MAYNARD R L,  SIDELL F R. Book review:   [23]  JIANG L L (姜莉莉), XUE W P (薛文平), MA H C (马红超), et al.
                 Chemical warfare  agents toxicology and treatment[J]. Journal of   Treatment of cyanide wastewater with pressurized hydrolysis[J].
                 Applied Toxicology, 1997, 17(1): 93-93.           Environmental Science and Technology (环境科学与技术), 2008,
            [4]   ZHANG J J (张静静). Research for the defense against CO and   31(12): 140-144.
                 cyanide over flower-like ceria based materials[D]. Beijing: Institute   [24]  LAN  X H (兰馨辉), YANG C (杨超), PAN Z H (潘祖鸿),  et al.
                 of NBC Defense (陆军防化学院), 2018.                    Experimental study on pressurized hydrolysis treatment of certain
            [5]   YE M J (叶明杰). Treatment of cyanide containing waste gas from   cyanide tailings[J]. Gold (黄金), 2019, 40(2): 69-72.
                 the carbonization process for the manufacture of carbon fiber[D].   [25]  LIU X (刘霄), AN Y L (安艳玲), LIU D F (刘定富). Optimization of
                 Hangzhou: Zhejiang University (浙江大学), 2016.       process parameters for treatment of cyanide waste liquid by alkaline
            [6]   KARLSSON H L.  Ammonia, nitrous  oxide and hydrogen cyanide   chlorination[J]. Environmental Pollution and Control (环境污染与防
                 emissions from five passenger vehicles[J]. Science of the Total   治), 2015, 6(6): 1-6.
                 Environment, 2004, 334/335: 125-132.          [26]  DENG P (邓嫔). Tretment of high-cyanide-containing wastewater by
            [7]   ZHANG K, WANG Z  Y, FANG W X,  et al.  High-temperature   three times alkaline chlorination[J]. Hunan Nonferrous Metals (湖南
                 pyrolysis behavior of a bituminous coal in a drop tube furnace and   有色金属), 2015, 31(2): 54-56.
                 further characterization of the resultant char[J]. Journal of Analytical   [27]  WANG Y (王洋), WANG B S (王宝山), GAO H J (高慧娟), et al.
                 and Applied Pyrolysis, 2019, 137: 163-170.        Treatment of cyanide-containing wastewater from  a gold mine by
            [8]   YUAN S, ZHOU  Z J, LI J,  et al.  HCN and NH 3 released from   alkaline chlorination process[J]. China Nonferrous Metallurgy (中国
                 biomass and  soybean cake under  rapid pyrolysis[J]. Energy and   有色冶金), 2020, 2(1): 69-72.
                 Fuels, 2010, 24(11): 6166-6171.               [28]  LI Y F (李亚峰), LIU J J (刘济嘉). Experiments and mathematical
            [9]   ZENGEL D, KOCH P, TORKASHVAND H, et al. Emission of toxic   simulation on ammonia removal in treating salt chemical wastewater
                 HCN during NO x removal by ammonia SCR in the exhaust of   by the hydrolysis acidification-BAF method[J]. Journal of Shenyang
                 lean-burn natural gas engines[J]. Angewandte Chemie International   Jianzhu University (沈阳建筑大学学报), 2016, 32(1): 162-169.
                 Edition, 2020, 59(34): 14423-14428.           [29]  LI C B (李成彬), GONG C  L (巩春龙), ZHANG  G P (张谷平).
            [10]  HADI B, AZIZ H Y, MITRA M. Ni, Pd, and Pt-embedded graphitic   Research  progress  of  biotreatment  of  cyanide-containing
                 carbon nitrides as  excellent adsorbents for HCN removal: A DFT   wastewater[J]. Gold (黄金), 2013, 34(11): 61-65.
                 study[J]. Applied Surface Science, 2018, 456: 882-889.     [30]  LI X P,  ZHONG H,  ZHOU L. Research progress of cyanide-
            [11]  SONG Z X, ZHANG Q L, NING P,  et al. Catalytic hydrolysis  of   containing wastewater treatment[J]. Journal of Chemical Industry
                 HCN on ZSM-5  modified by Fe or Nb for HCN removal: Surface   and Engineering, 2012, 33(2): 17-22.
                 species and performance[J]. RSC Advances, 2016, 6(112): 111389-   [31]  REN X J, LI Y F, ZHAO G H. Progress in the study of the treatment
                 111397.                                           of cyanide-containing wastewater from industries[J]. Industrial Water
            [12]  ZHANG F M (张奉民), LI K X (李开喜), LYU C X (吕春祥), et al.   Treatment, 2009, 29(8): 1-4.
                 Removal  methods of hydrogen cyanide[J]. New  Carbon Materials   [32]  CHEN J J, WANG Q, PAN J F, et al. Study on catalytic combustion
                 (新型炭材料), 2003, 18(2): 151-157.                    characteristics of hydrogen inside  micro scaled tube[J].  Advanced
            [13]  CHEN G R (陈冠荣). Encyclopedia chemical technics[M]. Beijing:   Materials Research, 2011, 354: 114-118.
                 Chemical Industry Press (化学工业出版社), 1997, 13: 143-161.     [33]  GLARBORG P,  MARSHALL P. Importance of the hydrogen
            [14]  AKCIL A, MUDDER T. Microbial destruction of cyanide wastes in   isocyanide isomer in modeling  hydrogen cyanide oxidation in
                 gold mining: Process review[J]. Biotechnology Letters, 2003, 25(6):   combustion[J]. Applied Catalysis, 2017, 19(2): 375-385.
                 445-450.                                      [34]  ANCA-COUCE A, SOMMERSACHER P, EVIC N,  et al.
            [15]  GURBUZ F, CIFTCI H, AKCIL A. Biodegradation of cyanide   Experiments  and modelling of  NO x precursors  release (NH 3 and
                 containing effluents by scenedesmus  obliquus[J]. Journal of   HCN) in fixed-bed biomass combustion conditions[J]. Fuel, 2018,
                 Hazardous Materials, 2009, 162(1): 74-79.         222: 529-537.
            [16]  WANG  L P, WEN Y J, LU J S,  et al.  Application of ozone  and   [35]  GIMENEZ-LOPEZ J, MILLERA A, BILBAO R. HCN oxidation in
                 membrane coupled technology for cyanide refining grinding   an O 2/CO 2 atmosphere: An experimental and kinetic  modeling
                 wastewater treatment[J]. Technology  of Water Treatment, 2019,   study[J]. Combustion and Flame, 2010, 157(2): 267-276.
                 45(4): 128-130.                               [36]  ARANI B O, FROUZAKIS  C  E,  MANTZARAS J,  et al. Direct
            [17] LI  Y  (李雅), LIU C M (刘晨明), SHI S  Y (石绍渊),  et al.   numerical simulation of turbulent channel-flow catalytic combustion:
                 Application of membrane absorption process in treatment of cyanide   Effects of  reynolds number and catalytic reactivity[J]. Combustion
                 waste water[J]. Gold (黄金), 2017, 38(3): 71-85.     and Flame, 2018, 187: 52-66.
            [18]  LI Z K, ZHENG Y, WANG X Y, et al. Application of electrodialysis   [37]  ZHANG  R D, LIU N, LEI Z G,  et al. Selective transformation of
                 to remove copper  and cyanide from simulated and real gold mine   various nitrogen-containing exhaust  gases toward N 2 over zeolite
                 effluents[J]. RSC Advances, 2015, 5(26): 19807-19817.     catalysts[J]. Chemical Reviews, 2016. 116(6): 3658-3721.
            [19]  ZHENG Y, LI Z K, WANG X Y, et al. The treatment of cyanide from   [38]  ZHANG F M (张奉民), QIAN G H (钱桂海), LI K X (李开喜), et
                 gold mine effluent by a novel five-compartment electrodialysis[J].   al. Study on catalytic combustion of waste hydrogen cyanide[J].
                 Electrochimica Acta, 2015, 169: 150-158.          China Synthetic Fiber Industry (合成纤维工业), 2004, 27(2): 27-28.
            [20]  LI H T (李慧婷). The study on electrochemical oxidation processes   [39]  TAN H Z, WANG X B, WANG C L. Characteristics of HCN removal
                 applied in industrial wastewater treatment[D]. Jilin: Jilin University   using CaO  at high temperatures[J]. Energy Fuels, 2009, 23(3):
                 (吉林大学), 2011.                                     1545-1550.
            [21]  XU Z M (徐忠敏), WENG Z P (翁占平), LI J J (李俊杰),  et al.   [40]  LIU N, YUAN  X N, CHEN B  H,  et al. Selective  catalytic
                 Experimental study on the semi-industrial treatment of cyanide   combustion of hydrogen cyanide over metal  modified zeolite
                 containing wastewater by catalytic  oxidation electrolysis-Fenton   catalysts: From experiment to theory[J]. Catalysis Today, 2017, 297:
                 complex precipitation method[J]. Gold (黄金), 2018, 39(4): 71-74.     201-210.
            [22]  OULEGO P, LACA A, DIAZ M. Kinetics and pathways of cyanide   [41]  SUN Q (孙青).  Preparation of nickel-based catalysts and their
   74   75   76   77   78   79   80   81   82   83   84