Page 210 - 《精细化工》2021年第10期
P. 210

·2140·                            精细化工   FINE CHEMICALS                                 第 38 卷

            增大至 103.5°。                                            nitride nanosheets and its uses as a catalyst support for hydrogenation
                (5)与纯 WPU 相比,WPU/GB1.0 的拉伸强度                       of nitroaromatics[J]. ACS Applied Materials & Interfaces, 2016, 8:
                                                                   9881-9888.
            从 10.18 MPa 增强至 16.46 MPa,杨氏模量从 10.10 MPa          [13]  LI J, GAN L Z, LIU Y C, et al. Boron nitride nanosheets reinforced
            提升至 11.57 MPa,断裂伸长率从 363.25%提高至                        waterborne polyurethane coatings for improving corrosion resistance
                                                                   and antifriction properties[J]. European Polymer Journal, 2018, 104: 57-63.
            443.23%。
                                                               [14]  LIU H X,  ZHANG H, PENG  C H,  et al. UV-curable waterborne
                (6)本文制备了 WPU/GB 复合涂料,在钢结构                          polyurethane dispersions modified with a trimethoxysilane
            设施、桥梁、电器等防腐领域具有很好的应用前景。                                end-capping agent and edge-hydroxylated boron nitride[J]. Journal of
                                                                   Coatings Technology and Research, 2019, 16(5): 1479-1492.
            更重要的是,这种简便的方法可以为各领域的 h-BN/                         [15]  HUANG  K, LIANG L  B,  CHAI S H,  et al. Aminopolymer
            水性聚合物复合材料的开发提供一种新方法。                                   functionalization  of boron nitride nanosheets for highly efficient
                                                                   capture of carbon dioxide[J]. Journal of Materials Chemistry A, 2017,
            参考文献:                                                  5(31): 16241-16248.
                                                               [16]  YU J H, HUANG X Y, WU C, et al. Interfacial modification of boron
            [1]   LI X G,  ZHANG  D W, LIU Z Y,  et al. Materials science: Share
                                                                   nitride nanoplatelets for epoxy composites with improved thermal
                corrosion data[J]. Nature, 2015, 527(7579): 441-442.
                                                                   properties[J]. Polymer, 2012, 53(2): 471-480.
            [2]   AKINDOYO  J O, BEG  M D H,  GHAZALI  S,  et al. Polyurethane
                                                               [17]  LI M T, ZHU W S, ZHANG P F, et al. Graphene-analogues boron
                types, synthesis and applications—A review[J]. RSC Advances, 2016,
                                                                   nitride  nanosheets  confining ionic liquids: A  high-performance
                6(115): 114453-114482.
                                                                   quasi-liquid solid electrolyte[J]. Small, 2016, 12(26): 3535-3542.
            [3]   WANG H H,  QIN S D,  YANG X F,  et al. A waterborne uniform
                                                               [18]  CUI M J, REN S M, QIN S L,  et al. Processable
                graphene-poly(urethane-acrylate) complex with enhanced anticorrosive
                                                                   poly(2-butylaniline)/hexagonal boron nitride nanohybrids for
                properties enabled by ionic interaction[J]. Chemical Engineering
                                                                   synergetic anticorrosive reinforcement of epoxy coating[J]. Corrosion
                Journal, 2018, 351: 939-951.
                                                                   Science, 2018, 131: 187-198.
            [4]   LI J, GAN L Z, LIU Y C, et al. Boron nitride nanosheets reinforced
                                                               [19]  YE  Y  W, LIU Z Y, LIU  W,  et al. Superhydrophobic oligoaniline-
                waterborne polyurethane coatings for improving corrosion resistance
                                                                   containing electroactive silica coating as pre-process coating  for
                and antifriction properties[J]. European Polymer Journal, 2018, 104:
                                                                   corrosion protection of carbon steel[J]. Chemical Engineering Journal,
                57-63.
                                                                   2018, 348: 940-951.
            [5]   YANG  N,  YANG T, WANG W,  et al. Polydopamine  modified
                polyaniline-graphene oxide composite for enhancement of corrosion   [20]  QIU S H, LI W, ZHENG W R,  et al. Synergistic effect of
                resistance[J]. Journal of Hazardous Materials, 2019, 377(5): 142-151.     polypyrrole-intercalated graphene for enhanced corrosion protection
            [6]   CUI C L, LIM A T O, HUANG J X. A cautionary note on graphene   of aqueous coating in 3.5% NaCl solution[J]. ACS Applied Materials
                anti-corrosion coatings[J]. Nature Nanotechnology,  2017,  12(9):   & Interfaces, 2017, 9(39): 34294-34304.
                834-835.                                       [21]  XU H Q, ZANG J B, YUAN  Y G, et al. Preparation of multilayer
            [7]   DING J H, ZHAO H R, ZHENG Y, et al. A long-term anticorrosive   graphene coatings  with interfacial bond to mild steel  via  covalent
                coating through graphene passivation[J]. Carbon, 2018, 138: 197-206.   bonding for high performance  anticorrosion and wear resistance[J].
            [8]   CHILKOOR  G, KARANAM S P, STAR S,  et al. Hexagonalboron   Carbon, 2019, 154: 156-168.
                nitride: The thinnest insulating barrier to microbial corrosion[J]. ACS   [22]  CAO C N (曹楚南), ZHANG J Q (张鉴清). An introduction to
                Nano, 2018, 12(3): 2242-2252.                      electrochemical impedance spectroscopy[M]. Beijing: Science Press
            [9]   LEI W W, LIU D, CHEN Y. Highly crumpled boron bitridenanosheets as   (科学出版社), 2002.
                adsorbents: Scalable solvent-less production[J]. Advanced Materials   [23]  LIU C B, QIU S  H, DU P,  et al. An ionic liquid-graphene oxide
                Interfaces, 2015, 2(3): 1400529.                   hybrid nanomaterial: Synthesis and anticorrosive applications[J].
            [10]  ZHI C Y, BANDO Y, TANG C C, et al. Large-scale fabrication of   Nanoscale, 2018, 10(17): 8115-8124.
                boron nitride nanosheets and their utilization in polymeric composites   [24]  LI  Y  Y, YANG Z Z, QIU H X,  et al. Self-aligned  graphene as
                with improved thermal  and mechanical properties[J]. Advanced   anticorrosive barrier in waterborne polyurethane composite coatings[J].
                Materials, 2009, 21(28): 2889-2893.                Journal of Materials Chemistry A, 2014, 2(34): 14139-14145.
            [11]  LIAN G, ZHANG  X, TAN  M,  et al. Facile synthesis  of 3D boron   [25]  RAMEZANZADEH B, HAERI Z, RAMEZANZADEH M. A facile
                nitride nanoflowers composed of  vertically aligned nanoflakes and   route of making silica nanoparticles-covered graphene oxide
                fabrication of  graphene-like BN by exfoliation[J]. Journal of   nanohybrids (SiO 2-GO); Fabrication of SiO 2-GO/epoxy composite
                Materials Chemistry, 2011, 21: 9201-9207.          coating with superior barrier and corrosion protection performance[J].
            [12]  SUN W L, MENG Y, FU Q R, et al. High-yield production of boron     Chemical Engineering Journal, 2016, 303: 511-528.
   205   206   207   208   209   210   211   212   213   214   215