Page 31 - 《精细化工》2021年第10期
P. 31
第 10 期 王文珍,等: 金属配合物催化 CO 2 转化为环碳酸酯的进展 ·1961·
of cyclic carbonates from epoxides and atmospheric pressure carbon [36] EMA T, MIYAZAKI Y, SHIMONISHI J, et al. Bifunctional
dioxide[J]. Chemical Communications, 2011, 47(43): 11888-11890. porphyrin catalysts for the synthesis of cyclic carbonates from
[19] BUCHARD A, KEMBER M R, SANDEMAN K G, et al. A epoxides and CO 2: Structural optimization and mechanistic study[J].
bimetallic iron (Ⅲ) catalyst for CO 2/epoxide coupling[J]. Chemical Journal of the American Chemical Society, 2014, 136(43): 15270-
Communications, 2011, 47(1): 212-214. 15279.
[20] DECORTES A, BELMONTE M M, BENTE-BUCHHOLZ J, et al. [37] MAEDA C, MITSUZANE M, EMA T. Chiral bifunctional
Efficient carbonate synthesis under mild conditions through metalloporphyrin catalysts for kinetic resolution of epoxides with
cycloaddition of carbon dioxide to oxiranes using a Zn (salphen) carbon dioxide[J]. Organic Letters, 2019, 21(6): 1853-1856.
catalyst[J]. Chemical Communications, 2010, 46(25): 4580-4582. [38] NAREDDY P, JORDAN F, SZOSTAK M. Recent developments in
[21] IIEREIJ E G, COUSSENS B, ZUIDEVELD M A, et al. Synthesis, ruthenium-catalyzed C-H arylation: Array of mechanistic manifolds[J].
solid state and DFT structure and olefin polymerization capability of ACS Catalysis, 2017, 7(9): 5721-5745.
a unique base-free dimeric methyl titanium dication[J]. Chemical [39] CHOY P Y, WONG S M, KAPDI A, et al. Recent developments in
Communications, 2010, 46(19): 3339-3341. palladium-catalysed non-directed coupling of (hetero) arene C—H
[22] ZHOU H, ZHANG W Z, LIU C H, et al. CO 2 adducts of bonds with C—Z (Z= B, Si, Sn, S, N, C, H) bonds in bi (hetero) aryl
N-heterocyclic carbenes: Thermal stability and catalytic activity synthesis[J]. Organic Chemistry Frontiers, 2018, 5(2): 288-321.
toward the coupling of CO 2 with epoxides[J]. The Journal of Organic [40] PIOU T, ROVIS T. Electronic and steric tuning of a prototypical
Chemistry, 2008, 73(20): 8039-8044. piano stool complex: Rh (Ⅲ) catalysis for C—H functionalization[J].
[23] HAN L, PARK S W, PARK D W. Silica grafted imidazolium-based Accounts of Chemical Research, 2018, 51(1): 170-180.
ionic liquids: Efficient heterogeneous catalysts for chemical fixation [41] YUAN C, LIU B. Total synthesis of natural products via iridium
of CO 2 to a cyclic carbonate[J]. Energy & Environmental Science, catalysis[J]. Organic Chemistry Frontiers, 2017, 5(1): 106-131.
2009, 2(12): 1286-1292. [42] DARENSBOURG D J, LEWIS S J, RODGERS J L, et al. Carbon
[24] ZHANG Y, CHAN J Y G. Sustainable chemistry: Imidazolium salts dioxide/epoxide coupling reactions utilizing Lewis base adducts of
in biomass conversion and CO 2 fixation[J]. Energy & Environmental zinc halides as catalysts. Cyclic carbonate versus polycarbonate
Science, 2010, 3(4): 408-417. production[J]. Inorganic Chemistry, 2003, 42(2): 581-589.
[25] PENG J, DENG Y. Cycloaddition of carbon dioxide to propylene [43] JAYAKUMAR S, LI H, TAO L, et al. Cationic Zn-porphyrin
oxide catalyzed by ionic liquids[J]. New Journal of Chemistry, 2001, immobilized in mesoporous silicas as bifunctional catalyst for CO 2
25(4): 639-641. cycloaddition reaction under cocatalyst free conditions[J]. ACS
[26] KIM H S, KIM J J, KIM H, et al. Imidazolium zinc tetrahalide- Sustainable Chemistry & Engineering, 2018, 6(7): 9237-9245.
catalyzed coupling reaction of CO 2 and ethylene oxide or propylene [44] RAVHURI Y, KURISINGAL J F, CHITUMALLA R K, et al.
oxide[J]. Journal of Catalysis, 2003, 220(1): 44-46. Adenine-based Zn(Ⅱ)/Cd(Ⅱ) metal-organic frameworks as efficient
[27] ARESTA M, DIBENEDETTO A, ANGELINI A. Catalysis for the heterogeneous catalysts for facile CO 2 fixation into cyclic carbonates: A
valorization of exhaust carbon: From CO 2 to chemicals, materials, DFT-supported study of the reaction mechanism[J]. Inorganic
and fuels. Technological use of CO 2[J]. Chemical Reviews, 2014, Chemistry, 2019, 58(17): 11389-11403.
114(3): 1709-1742. [45] DHANKHAR S S, DAS R, UGALE B, et al. Chemical fixation of
[28] SUN J, FUJITA S, ZHAO F, et al. Synthesis of styrene carbonate CO 2 under solvent and co-catalyst-free conditions using a highly
from styrene oxide and carbon dioxide in the presence of zinc porous two-fold interpenetrated Cu(Ⅱ)-metal-organic framework[J].
bromide and ionic liquid under mild conditions[J]. Green Chemistry, Crystal Growth & Design, 2021, 21(2): 1233-1241.
2004, 6(12): 613-616. [46] WANG W Z, XU Y C, WANG L, et al. Transition metal complexes
[29] CHO H C, LEE H S, CHUN J, et al. Tubular microporous organic with pyrazine amine ligand: Preparation, structure and carbon dioxide
networks bearing imidazolium salts and their catalytic CO 2 conversion copolymerization behavior[J]. Journal of Molecular Structure, 2019,
to cyclic carbonates[J]. Chemical Communications, 2011, 47(3): 1193: 280-285.
917-919. [47] FAN W, WANG W Z, WANG L, et al. Novel cobalt complex as an
[30] ZHAO Y C, YAO C Q, CHEN G W, et al. Highly efficient synthesis efficient catalyst for converting CO 2 into cyclic carbonates under
of cyclic carbonate with CO 2 catalyzed by ionic liquid in a mild conditions[J]. Catalysts, 2019, 9(11): 951-960.
microreactor[J]. Green Chemistry, 2013, 15(2): 446-452.. [48] ZHAO Z, QIN J, ZHANG C, et al. Recyclable single-component
[31] JI H, NAVEEN K, LEE W, et al. Pyridinium-functionalized ionic rare-earth metal catalysts for cycloaddition of CO 2 and epoxides at
metal-organic frameworks designed as bifunctional catalysts for CO 2 atmospheric pressure[J]. Inorganic Chemistry, 2017, 56(8): 4568-4575.
fixation into cyclic carbonates[J]. ACS Applied Materials & [49] UGALE B, DHANKHAR S S, NAGARAJA C M. Exceptionally
Interfaces, 2020, 12(22): 24868-24876. stable and 20-connected lanthanide metal-organic frameworks for
[32] ABAZARI R, SANATI S, MORSALI A, et al. Simultaneous presence selective CO 2 capture and conversion at atmospheric pressure[J].
of open metal sites and amine groups on a 3D Dy(Ⅲ)-metal-organic Crystal Growth & Design, 2018, 18(4): 2432-2440.
framework catalyst for mild and solvent-free conversion of CO 2 to [50] JING T, CHEN L, JIANG F, et al. Fabrication of a robust lanthanide
cyclic carbonates[J]. Inorganic Chemistry, 2021, 60(3): 2056-2067. metal-organic framework as a multifunctional material for Fe(Ⅲ)
[33] GRIFFITHS K, TSIPIS A C, KUMAR P, et al. 3d/4f coordination detection, CO 2 capture, and utilization[J]. Crystal Growth & Design,
clusters as cooperative catalysts for highly diastereoselective michael 2018, 18(5): 2956-2963.
addition reactions[J]. Inorganic Chemistry, 2017, 56(16): 9563-9573. [51] GARDEN J A, SAINI P K, WILLIAMS C K. Greater than the sum
[34] WANG W, WANG Y, LI C, et al. State-of-the-art multifunctional of its parts: A heterodinuclear polymerization catalyst[J]. Journal of
heterogeneous POP catalyst for cooperative transformation of CO 2 to the American Chemical Society, 2015, 137(48): 15078-15081.
cyclic carbonates[J]. ACS Sustainable Chemistry & Engineering, [52] QIAO W Z, XU H, CHENG P, et al. 3d-4f Heterometal-organic
2017, 5(6): 4523-4528. frameworks for efficient capture and conversion of CO 2[J]. Crystal
[35] LI P, CAO Z. Catalytic preparation of cyclic carbonates from CO 2 Growth & Design, 2017, 17(6): 3128-3133.
and epoxides by metal-porphyrin and -corrole complexes: Insight [53] GAO G, WANG L, ZHANG R, et al. Hexanuclear 3d-4f complexes
into effects of cocatalyst and meso-substitution[J]. Organometallics, as efficient catalysts for converting CO 2 into cyclic carbonates[J].
2018, 37(3): 406-414. Dalton Transactions, 2019, 48(12): 3941-3945.