Page 31 - 《精细化工》2021年第10期
P. 31

第 10 期                    王文珍,等:  金属配合物催化 CO 2 转化为环碳酸酯的进展                               ·1961·


                 of cyclic carbonates from epoxides and atmospheric pressure carbon   [36]  EMA T,  MIYAZAKI Y, SHIMONISHI J,  et al. Bifunctional
                 dioxide[J]. Chemical Communications, 2011, 47(43): 11888-11890.     porphyrin catalysts for the synthesis of cyclic  carbonates from
            [19]  BUCHARD  A, KEMBER M  R, SANDEMAN K G,  et al. A   epoxides and CO 2: Structural optimization and mechanistic study[J].
                 bimetallic iron (Ⅲ) catalyst for CO 2/epoxide coupling[J]. Chemical   Journal of the American Chemical Society, 2014, 136(43): 15270-
                 Communications, 2011, 47(1): 212-214.             15279.
            [20]  DECORTES A, BELMONTE M M, BENTE-BUCHHOLZ J, et al.   [37]  MAEDA C, MITSUZANE  M,  EMA T. Chiral bifunctional
                 Efficient carbonate synthesis under mild conditions through   metalloporphyrin catalysts for  kinetic resolution of epoxides with
                 cycloaddition of carbon  dioxide to  oxiranes using a Zn  (salphen)   carbon dioxide[J]. Organic Letters, 2019, 21(6): 1853-1856.
                 catalyst[J]. Chemical Communications, 2010, 46(25): 4580-4582.     [38]  NAREDDY P, JORDAN F, SZOSTAK M. Recent developments in
            [21]  IIEREIJ E G, COUSSENS B, ZUIDEVELD M A, et al. Synthesis,   ruthenium-catalyzed C-H arylation: Array of mechanistic manifolds[J].
                 solid state and DFT structure and olefin polymerization capability of   ACS Catalysis, 2017, 7(9): 5721-5745.
                 a unique base-free dimeric  methyl titanium dication[J]. Chemical   [39]  CHOY P Y, WONG S M, KAPDI A, et al. Recent developments in
                 Communications, 2010, 46(19): 3339-3341.          palladium-catalysed non-directed coupling of (hetero) arene C—H
            [22]  ZHOU H, ZHANG  W Z,  LIU C H,  et al. CO 2 adducts  of   bonds with C—Z (Z= B, Si, Sn, S, N, C, H) bonds in bi (hetero) aryl
                 N-heterocyclic  carbenes: Thermal stability and catalytic activity   synthesis[J]. Organic Chemistry Frontiers, 2018, 5(2): 288-321.
                 toward the coupling of CO 2 with epoxides[J]. The Journal of Organic   [40]  PIOU T, ROVIS T. Electronic and  steric tuning of a prototypical
                 Chemistry, 2008, 73(20): 8039-8044.               piano stool complex: Rh (Ⅲ) catalysis for C—H functionalization[J].
            [23]  HAN L, PARK S W, PARK D W. Silica grafted imidazolium-based   Accounts of Chemical Research, 2018, 51(1): 170-180.
                 ionic liquids: Efficient heterogeneous catalysts for chemical fixation   [41]  YUAN C, LIU  B. Total synthesis of natural products  via iridium
                 of CO 2 to a cyclic  carbonate[J]. Energy & Environmental Science,   catalysis[J]. Organic Chemistry Frontiers, 2017, 5(1): 106-131.
                 2009, 2(12): 1286-1292.                       [42]  DARENSBOURG D J, LEWIS S J, RODGERS J L, et al. Carbon
            [24]  ZHANG Y, CHAN J Y G. Sustainable chemistry: Imidazolium salts   dioxide/epoxide coupling reactions  utilizing Lewis base adducts  of
                 in biomass conversion and CO 2 fixation[J]. Energy & Environmental   zinc halides as catalysts. Cyclic carbonate versus polycarbonate
                 Science, 2010, 3(4): 408-417.                     production[J]. Inorganic Chemistry, 2003, 42(2): 581-589.
            [25]  PENG J, DENG Y. Cycloaddition  of  carbon dioxide to  propylene   [43]  JAYAKUMAR S,  LI H, TAO L,  et al. Cationic Zn-porphyrin
                 oxide catalyzed by ionic liquids[J]. New Journal of Chemistry, 2001,   immobilized in mesoporous silicas as bifunctional catalyst for CO 2
                 25(4): 639-641.                                   cycloaddition reaction  under cocatalyst free  conditions[J]. ACS
            [26]  KIM H S, KIM J J, KIM H,  et al. Imidazolium  zinc tetrahalide-   Sustainable Chemistry & Engineering, 2018, 6(7): 9237-9245.
                 catalyzed coupling reaction of CO 2 and ethylene oxide or propylene   [44]  RAVHURI Y, KURISINGAL J F,  CHITUMALLA R K,  et al.
                 oxide[J]. Journal of Catalysis, 2003, 220(1): 44-46.     Adenine-based Zn(Ⅱ)/Cd(Ⅱ) metal-organic frameworks as efficient
            [27]  ARESTA M,  DIBENEDETTO A, ANGELINI A. Catalysis for the   heterogeneous catalysts for facile CO 2 fixation into cyclic carbonates: A
                 valorization of exhaust carbon: From CO 2 to chemicals,  materials,   DFT-supported study of the reaction mechanism[J].  Inorganic
                 and fuels. Technological use of CO 2[J]. Chemical Reviews, 2014,   Chemistry, 2019, 58(17): 11389-11403.
                 114(3): 1709-1742.                            [45]  DHANKHAR S S, DAS R, UGALE B, et al. Chemical fixation of
            [28]  SUN J, FUJITA S, ZHAO F,  et al.  Synthesis of styrene  carbonate   CO 2 under  solvent and co-catalyst-free conditions  using a highly
                 from styrene oxide and carbon dioxide in the presence of zinc   porous two-fold interpenetrated Cu(Ⅱ)-metal-organic framework[J].
                 bromide and ionic liquid under mild conditions[J]. Green Chemistry,   Crystal Growth & Design, 2021, 21(2): 1233-1241.
                 2004, 6(12): 613-616.                         [46]  WANG W Z, XU Y C, WANG L, et al. Transition metal complexes
            [29]  CHO H C, LEE H S, CHUN J, et al. Tubular microporous organic   with pyrazine amine ligand: Preparation, structure and carbon dioxide
                 networks bearing imidazolium salts and their catalytic CO 2 conversion   copolymerization behavior[J]. Journal of Molecular Structure, 2019,
                 to cyclic carbonates[J]. Chemical Communications,  2011, 47(3):   1193: 280-285.
                 917-919.                                      [47]  FAN W, WANG W Z, WANG L, et al. Novel cobalt complex as an
            [30]  ZHAO Y C, YAO C Q, CHEN G W, et al. Highly efficient synthesis   efficient catalyst for converting CO 2 into cyclic carbonates under
                 of cyclic carbonate with CO 2 catalyzed by ionic liquid in a   mild conditions[J]. Catalysts, 2019, 9(11): 951-960.
                 microreactor[J]. Green Chemistry, 2013, 15(2): 446-452..     [48]  ZHAO  Z, QIN  J, ZHANG C,  et al. Recyclable  single-component
            [31]  JI H, NAVEEN  K, LEE W,  et al. Pyridinium-functionalized ionic   rare-earth metal catalysts for cycloaddition of CO 2 and epoxides at
                 metal-organic frameworks designed as bifunctional catalysts for CO 2   atmospheric pressure[J]. Inorganic Chemistry, 2017, 56(8): 4568-4575.
                 fixation into cyclic carbonates[J]. ACS Applied Materials &   [49]  UGALE B, DHANKHAR S S, NAGARAJA C M.  Exceptionally
                 Interfaces, 2020, 12(22): 24868-24876.            stable and  20-connected lanthanide metal-organic frameworks for
            [32]  ABAZARI R, SANATI S, MORSALI A, et al. Simultaneous presence   selective CO 2 capture and conversion at  atmospheric pressure[J].
                 of open metal sites and amine groups on a 3D Dy(Ⅲ)-metal-organic   Crystal Growth & Design, 2018, 18(4): 2432-2440.
                 framework catalyst for mild and solvent-free conversion of CO 2 to   [50]  JING T, CHEN L, JIANG F, et al. Fabrication of a robust lanthanide
                 cyclic carbonates[J]. Inorganic Chemistry, 2021, 60(3): 2056-2067.     metal-organic framework as a  multifunctional material  for Fe(Ⅲ)
            [33]  GRIFFITHS K, TSIPIS A C, KUMAR P,  et al. 3d/4f coordination   detection, CO 2 capture, and utilization[J]. Crystal Growth & Design,
                 clusters as cooperative catalysts for highly diastereoselective michael   2018, 18(5): 2956-2963.
                 addition reactions[J]. Inorganic Chemistry, 2017, 56(16): 9563-9573.     [51]  GARDEN J A, SAINI P K, WILLIAMS C K. Greater than the sum
            [34]  WANG W, WANG  Y,  LI C,  et al. State-of-the-art multifunctional   of its parts: A heterodinuclear polymerization catalyst[J]. Journal of
                 heterogeneous POP catalyst for cooperative transformation of CO 2 to   the American Chemical Society, 2015, 137(48): 15078-15081.
                 cyclic  carbonates[J]. ACS Sustainable Chemistry & Engineering,   [52]  QIAO W Z, XU  H, CHENG P,  et al. 3d-4f Heterometal-organic
                 2017, 5(6): 4523-4528.                            frameworks for efficient capture and conversion of CO 2[J]. Crystal
            [35]  LI P,  CAO Z.  Catalytic preparation of cyclic carbonates from CO 2   Growth & Design, 2017, 17(6): 3128-3133.
                 and epoxides  by metal-porphyrin and -corrole complexes: Insight   [53]  GAO G, WANG L, ZHANG R, et al. Hexanuclear 3d-4f complexes
                 into effects of cocatalyst and meso-substitution[J]. Organometallics,   as efficient catalysts for converting CO 2 into cyclic carbonates[J].
                 2018, 37(3): 406-414.                             Dalton Transactions, 2019, 48(12): 3941-3945.
   26   27   28   29   30   31   32   33   34   35   36