Page 200 - 《精细化工》2021年第11期
P. 200

·2346·                            精细化工   FINE CHEMICALS                                 第 38 卷

            比容量图。                                              [2]   PARK J  H, PARK W, KIM J H,  et al. Close-packed poly(methyl
                                                                   methacrylate) nanoparticle arrays-coated polyethylene separators for
                                                                   high-power lithium-ion polymer batteries[J]. Journal of Power Sources,
                                                                   2011, 196(16): 7035-7038.
                                                               [3]   CAI Z J, LIU Y B, LIU S S, et al. High performance of lithium-ion
                                                                   polymer battery based on non-aqueous lithiated perfluorinated sulfonic
                                                                   ion-exchange membranes[J]. Energy and Environmental Science, 2012,
                                                                   5(2): 5690-5693.
                                                               [4]   GU T T, ZHOU M, HUANG B, et al. Advanced Li-organic batteries
                                                                   with super-high capacity and long cycle life via multiple redox
                                                                   reactions[J]. Chemical Engineering Journal, 2019, 373: 501-507.
                                                               [5]   MA X G (马先果), ZOU S L (邹树良), DENG Z H (邓正华).
                                                                   Synthesis and electrochemical performance of flexible polymer
                                                                   electrolyte[J]. Fine Chemicals (精细化工), 2018, 35(7): 1208-1215.
                                                               [6]   CHAE I S, KOYANO M, SUKEGAWA T, et al. Redox equilibrium
                                                                   of a  zwitterionic radical polymer in a  non-aqueous electrolyte as a
                                                                        +
                                                                   novel Li  host material in a Li-ion battery[J]. Journal of Materials
             图 12  PTAm 电极和 PTAm-GO 电极的充放电比容量图                     Chemistry A, 2013, 1(34): 9608-9611.
            Fig. 12    Charge-discharge specific capacity of PTAm electrode   [7]   ZHU J F, ZHU T,  TUO H, et al. Synthesis of a tempo-substituted
                   and PTAm-GO electrode                           polyacrylamide bearing a sulfonate sodium pendant and its properties
                                                                   in an organic radical battery[J]. Polymers, 2019, 11(12). DOI:
                                                                   10.3390/polym11122076.
                 由图 12 可见,PTAm 电极的初始比容量约为                      [8]   KIM J W, AHN J H, GOURI C, et al. Electrochemical properties of
            70 mA·h/g,在经过 300 次循环后,比容量保持在                          rechargeable organic radical battery with PTMA cathode[J]. Metals
                                                                   and Materials International, 2009, 15(1): 77-82.
            39 mA·h/g ,而 PTAm-GO 电极初始比容量 为                     [9]   KOSHIKA K, CHIKUSHI N, SANO N, et al. A TEMPO-substituted
            143 mA·h/g,经过 300 次循环后比容量为 138 mA·h/g,                 polyacrylamide as a new cathode material: An organic rechargeable
                                                                   device composed of polymerelectrodes and aqueous electrolyte[J].
            容量保持率接近 96.5%,几乎可以完全可逆且没有太                             Green Chemistry, 2010, 12(9): 1573-1575.
            大容量损失,与课题组曾做的二甲基二烯丙基氯化                             [10]  AI W, DU Z Z, FAN Z  X,  et al. Chemically engineered graphene
                                                                   oxide as high performance cathode materials for Li-ion batteries[J].
            铵分子内 掺杂氮氧 自由基聚 合物 PTAm-co-                             Carbon, 2014, 76: 148-154.
            PDMDAAC    [21] 相比,比容量增加了 77 mA·h/g。与              [11]  LI Q R, ZHOU Z F, LIU S S, et al. Growth of FePO 4 nanoparticles
                                                                   on graphene oxide sheets for synthesis of LiFePO 4/graphene[J].
            PTAm 电极相比,PTAm-GO 电极具有高于其近两倍                           Ionics, 2016, 22(7): 1027-1034.
            的容量性能,这是由于 PTAm 分子链接枝在 GO 表                        [12]  ZHANG L H, LIANG H Y. Enhancing electrochemical performance
                                                                   of LiFePO 4 by in situ reducing flexible graphene[J]. Russian Journal
            面阻止了 GO 的团聚        [13] ,增大了 GO 的层间距,从                 of Electrochemistry, 2013, 49(10): 955-959.
            而使 PTAm-GO 具有更大的活性比表面积。PTAm-                       [13]  LI Y J, JIAN Z K, LANG M D,  et al. Covalently functionalized
                                                                   graphene by radical polymers for graphene-based high-performance
            GO 综合了 PTAm 的快速单电子氧化还原反应和 GO                           cathode materials[J]. Applied Materials and Interfaces, 2016, 8(27):
            的表面法拉第反应,因此具有更高的储能能力。这                                 17352-17359.
                                                               [14]  CAMILLE P, TERESA J B. Graphite oxide/polyoxometalate
            使 PTAm-GO 电极在正极材料领域具有非常广阔的                             nanocomposites as adsorbents of ammonia[J]. The Journal of Physical
            应用前景。                                                  Chemistry C, 2009, 113(9): 3800-3809.
                                                               [15]  CHIKUSHI N, YAMADA H, OYAIZU K, et al. TEMPO-substituted
                                                                   polyacrylamide for an  aqueous electrolyte-typed and organic-based
            3   结论                                                 rechargeable device[J]. Science China Chemistry, 2012, 55(5): 821-
                                                                   828.
                                                               [16]  LIU X X (刘晓暄), DENG X H (邓湘华), GUO X (郭旭),  et al.
                 通过 ATRP 法制备了氮氧自由基聚合物 PTAm                         Reaction kinetics of  photoinduced bulk  polymerization of 4-
            与 GO 的复合物 PTAm-GO。将 PTAm-GO 电极组装                       acrylamido-2,2,6,6-tetramethyl-piperidine  in  melting  state[J].
                                                                   Photographic Science  and Photochemistry (感光科学与光化学),
            成半电池进行电化学测试,结果表明,PTAm-GO 可                             2004, 22(4): 277-286.
            以发生可逆的氧化还原反应,且具有比 PTAm 更低                          [17]  KALEEM-UR-RAHMAN N. Study on synthesis of poly mers
                                                                   containingnitroxide radicals and their properties[D].  Hangzhou:
            的电化学阻抗和更高的放比电容量。在 200 mA/g                             Zhejiang University (浙江大学), 2019.
            电流密度下循环 300 次后,PTAm-GO 电极放电比容                      [18]  LI N  H (李妮檜). Design and optimization of heat dissipation
                                                                   structure for thermal management system of lithium ion batteries[D].
            量保持在 138 mA·h/g,容量保持率为 96.5%,说明                        Chengdu: Southwest Jiaotong University (西南交通大学), 2019.
            PTAm-GO 具有良好的储能能力和循环性能。这对锂                         [19]  WANG Y Y (王莹莹), WANG B (王斌), HUANG Y W (黄月文),
                                                                   et al. Preparation and properties of  polystyrene/reduced graphene
            离子电池有机电极材料的发展有积极促进作用,也                                 oxide core-shell microspheres[J]. Fine Chemicals (精细化工), 2018,
            为 GO 和有机聚合物进行共价改性提供了参考。                                35(2): 181-186.
                                                               [20]  SUN S, GUAN T, ZUO P J,  et al. Accelerated aging  analysis  on
                                                                   cycle life of LiFePO 4/graphite batteries based on different rates[J].
            参考文献:                                                  Chem Electro Chem, 2018, 5(16): 2301-2309.
            [1]   XU N, MEI S W, CHEN Z X, et al. High-performance Li-organic   [21]  ZHU J F (朱军峰), ZHU T (朱婷), TUO H (拓欢), et al. Study on
                 battery based on thiophene-containing porous organic polymers with   intramolecular doping of nitroxyl radical polymer PTAm with dimethyl
                 different morphology and surface area as the anode materials[J].   diallyl  ammonium chloride[J]. Journal of Shaanxi  University of
                 Chemical Engineering Journal, 2020, 395: 124975.   Science & Technology (陕西科技大学学报), 2019, 37(5): 72-77.
   195   196   197   198   199   200   201   202   203   204   205