Page 200 - 《精细化工》2021年第11期
P. 200
·2346· 精细化工 FINE CHEMICALS 第 38 卷
比容量图。 [2] PARK J H, PARK W, KIM J H, et al. Close-packed poly(methyl
methacrylate) nanoparticle arrays-coated polyethylene separators for
high-power lithium-ion polymer batteries[J]. Journal of Power Sources,
2011, 196(16): 7035-7038.
[3] CAI Z J, LIU Y B, LIU S S, et al. High performance of lithium-ion
polymer battery based on non-aqueous lithiated perfluorinated sulfonic
ion-exchange membranes[J]. Energy and Environmental Science, 2012,
5(2): 5690-5693.
[4] GU T T, ZHOU M, HUANG B, et al. Advanced Li-organic batteries
with super-high capacity and long cycle life via multiple redox
reactions[J]. Chemical Engineering Journal, 2019, 373: 501-507.
[5] MA X G (马先果), ZOU S L (邹树良), DENG Z H (邓正华).
Synthesis and electrochemical performance of flexible polymer
electrolyte[J]. Fine Chemicals (精细化工), 2018, 35(7): 1208-1215.
[6] CHAE I S, KOYANO M, SUKEGAWA T, et al. Redox equilibrium
of a zwitterionic radical polymer in a non-aqueous electrolyte as a
+
novel Li host material in a Li-ion battery[J]. Journal of Materials
图 12 PTAm 电极和 PTAm-GO 电极的充放电比容量图 Chemistry A, 2013, 1(34): 9608-9611.
Fig. 12 Charge-discharge specific capacity of PTAm electrode [7] ZHU J F, ZHU T, TUO H, et al. Synthesis of a tempo-substituted
and PTAm-GO electrode polyacrylamide bearing a sulfonate sodium pendant and its properties
in an organic radical battery[J]. Polymers, 2019, 11(12). DOI:
10.3390/polym11122076.
由图 12 可见,PTAm 电极的初始比容量约为 [8] KIM J W, AHN J H, GOURI C, et al. Electrochemical properties of
70 mA·h/g,在经过 300 次循环后,比容量保持在 rechargeable organic radical battery with PTMA cathode[J]. Metals
and Materials International, 2009, 15(1): 77-82.
39 mA·h/g ,而 PTAm-GO 电极初始比容量 为 [9] KOSHIKA K, CHIKUSHI N, SANO N, et al. A TEMPO-substituted
143 mA·h/g,经过 300 次循环后比容量为 138 mA·h/g, polyacrylamide as a new cathode material: An organic rechargeable
device composed of polymerelectrodes and aqueous electrolyte[J].
容量保持率接近 96.5%,几乎可以完全可逆且没有太 Green Chemistry, 2010, 12(9): 1573-1575.
大容量损失,与课题组曾做的二甲基二烯丙基氯化 [10] AI W, DU Z Z, FAN Z X, et al. Chemically engineered graphene
oxide as high performance cathode materials for Li-ion batteries[J].
铵分子内 掺杂氮氧 自由基聚 合物 PTAm-co- Carbon, 2014, 76: 148-154.
PDMDAAC [21] 相比,比容量增加了 77 mA·h/g。与 [11] LI Q R, ZHOU Z F, LIU S S, et al. Growth of FePO 4 nanoparticles
on graphene oxide sheets for synthesis of LiFePO 4/graphene[J].
PTAm 电极相比,PTAm-GO 电极具有高于其近两倍 Ionics, 2016, 22(7): 1027-1034.
的容量性能,这是由于 PTAm 分子链接枝在 GO 表 [12] ZHANG L H, LIANG H Y. Enhancing electrochemical performance
of LiFePO 4 by in situ reducing flexible graphene[J]. Russian Journal
面阻止了 GO 的团聚 [13] ,增大了 GO 的层间距,从 of Electrochemistry, 2013, 49(10): 955-959.
而使 PTAm-GO 具有更大的活性比表面积。PTAm- [13] LI Y J, JIAN Z K, LANG M D, et al. Covalently functionalized
graphene by radical polymers for graphene-based high-performance
GO 综合了 PTAm 的快速单电子氧化还原反应和 GO cathode materials[J]. Applied Materials and Interfaces, 2016, 8(27):
的表面法拉第反应,因此具有更高的储能能力。这 17352-17359.
[14] CAMILLE P, TERESA J B. Graphite oxide/polyoxometalate
使 PTAm-GO 电极在正极材料领域具有非常广阔的 nanocomposites as adsorbents of ammonia[J]. The Journal of Physical
应用前景。 Chemistry C, 2009, 113(9): 3800-3809.
[15] CHIKUSHI N, YAMADA H, OYAIZU K, et al. TEMPO-substituted
polyacrylamide for an aqueous electrolyte-typed and organic-based
3 结论 rechargeable device[J]. Science China Chemistry, 2012, 55(5): 821-
828.
[16] LIU X X (刘晓暄), DENG X H (邓湘华), GUO X (郭旭), et al.
通过 ATRP 法制备了氮氧自由基聚合物 PTAm Reaction kinetics of photoinduced bulk polymerization of 4-
与 GO 的复合物 PTAm-GO。将 PTAm-GO 电极组装 acrylamido-2,2,6,6-tetramethyl-piperidine in melting state[J].
Photographic Science and Photochemistry (感光科学与光化学),
成半电池进行电化学测试,结果表明,PTAm-GO 可 2004, 22(4): 277-286.
以发生可逆的氧化还原反应,且具有比 PTAm 更低 [17] KALEEM-UR-RAHMAN N. Study on synthesis of poly mers
containingnitroxide radicals and their properties[D]. Hangzhou:
的电化学阻抗和更高的放比电容量。在 200 mA/g Zhejiang University (浙江大学), 2019.
电流密度下循环 300 次后,PTAm-GO 电极放电比容 [18] LI N H (李妮檜). Design and optimization of heat dissipation
structure for thermal management system of lithium ion batteries[D].
量保持在 138 mA·h/g,容量保持率为 96.5%,说明 Chengdu: Southwest Jiaotong University (西南交通大学), 2019.
PTAm-GO 具有良好的储能能力和循环性能。这对锂 [19] WANG Y Y (王莹莹), WANG B (王斌), HUANG Y W (黄月文),
et al. Preparation and properties of polystyrene/reduced graphene
离子电池有机电极材料的发展有积极促进作用,也 oxide core-shell microspheres[J]. Fine Chemicals (精细化工), 2018,
为 GO 和有机聚合物进行共价改性提供了参考。 35(2): 181-186.
[20] SUN S, GUAN T, ZUO P J, et al. Accelerated aging analysis on
cycle life of LiFePO 4/graphite batteries based on different rates[J].
参考文献: Chem Electro Chem, 2018, 5(16): 2301-2309.
[1] XU N, MEI S W, CHEN Z X, et al. High-performance Li-organic [21] ZHU J F (朱军峰), ZHU T (朱婷), TUO H (拓欢), et al. Study on
battery based on thiophene-containing porous organic polymers with intramolecular doping of nitroxyl radical polymer PTAm with dimethyl
different morphology and surface area as the anode materials[J]. diallyl ammonium chloride[J]. Journal of Shaanxi University of
Chemical Engineering Journal, 2020, 395: 124975. Science & Technology (陕西科技大学学报), 2019, 37(5): 72-77.