Page 42 - 《精细化工》2021年第11期
P. 42

·2188·                            精细化工   FINE CHEMICALS                                 第 38 卷

            参考文献:                                              [19]  TIAN H  Y, LIU  X, LIANG Z  Q,  et al.  Gold nanorods/g-C 3N 4
                                                                   heterostructures for plasmon-enhanced photocatalytic H 2 evolution in
            [1]   LIAO G F, GONG Y, ZHANG L, et al. Semiconductor polymeric   visible and near-infrared light[J]. Journal of Colloid and Interface
                 graphitic carbon  nitride photocatalysts: The "holy grail" for the   Science, 2019, 557: 700-708.
                 photocatalytic hydrogen evolution reaction under visible light[J].   [20]  HUANG J Q,  LI  G J,  ZHOU Z F,  et al. Efficient photocatalytic
                 Energy & Environmental Science, 2019, 12(7): 2080-2147.     hydrogen production over Rh and Nb codoped TiO 2  nanorods[J].
            [2]   PAWAR M, TOPCU S S, GOUMA P. A brief overview of TiO 2   Chemical Engineering Journal, 2018, 337: 282-289.
                 photocatalyst for organic dye remediation: Case study of reaction   [21]  WANG P (王苹), LI X Y (李心宇), SHI Z L (时占领), et al. Study
                 mechanisms involved in Ce-TiO 2 photocatalysts system[J]. Journal   on Ag and Ag 2O synergistically enhancing the performance of TiO 2
                 of Nanomaterials, 2018, 2018: 1-14.               photocatalytic hydrogen production[J]. Journal of Inorganic
            [3]   LU  Y  H, QIN  Z P, WANG N  X,  et al.  TiO 2-incorporated   Materials (无机材料学报), 2020, 35(7): 781-788.
                 polyelectrolyte  composite  membrane  with  transformable  [22]  GNANASEKARAN L, HEMAMALINI R, RAJEDRAN S,  et al.
                 hydrophilicity/hydrophobicity for nanofiltration separation[J]. Chinese   Nanosized Fe 3O 4  incorporated on a TiO 2 surface for the  enhanced
                 Journal of Chemical Engineering, 2020, 28(10): 2533-2541.     photocatalytic degradation  of organic pollutants[J]. Journal of
            [4]   FUJISHIMA A, HONDA K. Electrochemical photolysis of water at a   Molecular Liquids, 2019, 287: 1-29.
                 semiconductor electrode[J]. Nature, 1972, 238(5358): 37-38.     [23]  LI N (李楠). Preparation of TiO 2/ZSM-5 mesoporous structure and
            [5]   FRANK S N, BARD A J. Heterogeneous photocatalytic oxidation of   photocatalytic degradation of printing and dyeing wastewater[J].
                 cyanide ion in aqueous solutions at titanium dioxide powder[J].   Printing and Dyeing Auxiliary (印染助剂), 2019, 36(3): 24-27.
                 Journal of the American Chemical Society, 1977, 99(1): 303-304.     [24]  YE X  Y (叶信余), YANG L J (杨丽娟), CHEN H (陈红),  et al.
            [6]   GUO Q, ZHOU  C Y, MA Z B,  et al.  Fundamentals of TiO 2   Application of TiO 2/SnO 2 composite hollow spheres in dye-sensitized
                 photocatalysis: Concepts, mechanisms, and challenges[J]. Advanced   solar cells[J]. Acta Molecular Science (分子科学学报), 2020, 36(2):
                 Materials, 2019, 31: 1-26.                        118-124.
            [7]   LINSEBIGLER A L, LU G, YATES J J T. Photocatalysis on TiO 2   [25]  XIAO B C, LIN  L Y. Substrate diameter-dependent photovoltaic
                 surfaces: Principles,  mechanisms, and selected results[J]. Chemical   performance of flexible fiber-type dye-sensitized solar cells with
                 Reviews, 1995, 95(3): 735-758.                    TiO 2 nanoparticle/TiO 2 Nanotube array photoanodes[J]. Nanomaterials,
            [8]   TANG Y C, HU C, WANG Y Z. Recent advances in mechanisms   2020, 10(1): 1-12.
                 and kinetics of TiO 2 photocatalysis[J]. Progress in Chemistry, 2002,   [26]  WANG  R, HASHIMOTO K, FUJISHIMA A,  et al.  Light-induced
                 14(3): 192-199.                                   amphiphilic surfaces[J]. Nature, 1997, 388(6641): 431-432.
            [9]   THOMPSON T L, YATES J T. Surface science studies of the   [27]  ZHANG T J (张太军), BI H (毕晖), ZHANG M (张敏), et al. Study
                 photoactivation of TiO 2  new photochemical processes[J]. Chemical   on the preparation and performance of SiO 2-KH550/TiO 2 sunscreen[J].
                 Reviews, 2006, 106(10): 4428-4453.                Journal of Light Industry (轻工学报), 2019, 34(1): 51-56.
            [10]  XU J T (徐家通), CHEN X Q (陈小泉), ZHU H L (朱红玲), et al.   [28]  SAQIB N U, ADNAN  R, SHAH I. A  mini-review on rare earth
                 Preparation of nano-α-Fe 2O 3/TiO 2 photocatalyst and its photocatalytic   metal-doped TiO 2 for  photocatalytic remediation  of wastewater[J].
                 performance[J]. New  Chemical Materials  (化工新型材料), 2020,   Environmental Science and Pollution Research, 2016, 23(16):
                 48(3): 197-202.                                   15941-15951.
            [11]  LEE D G, KIM M, KIM B J, et al. Effect of TiO 2 particle size and   [29]  LIANG Z W (梁梓薇), WANG J  Y (王嘉怡), YANG  Q  (杨倩).
                 layer thickness on  mesoscopic perovskite solar cells[J]. Applied   Preparation and catalytic performance of zirconium-doped titania-based
                 Surface Science, 2019, 477: 131-136.              visible light  catalyst[J]. Industrial  Catalysis (工业催化), 2020, 28(8):
            [12]  ZHANG J (张景), YAO Z  W (姚州威), LIU  L F (刘兰芳). A   42-48.
                 synthesis method and catalytic performance of small particle size   [30]  SATO S. Photocatalytic activity of NO x-doped TiO 2 in  the visible
                 nanometer titanium dioxide[J]. Guangzhou Chemical Industry (广州  light region[J]. Chemical Physics Letters, 1986, 123(1/2): 126-128.
                 化工), 2019, 47(1): 51-53.                      [31]  ASAHI R, MORIKAWA T, OHWAKI T,  et al.  Visible-light
            [13]  SON Y J, KANG J S, YOON J, et al. Influence of TiO 2 particle size   photocatalysis in nitrogen-doped titanium oxides[J]. Science, 2001,
                 on dye-sensitized solar cells employing an organic sensitizer and a   293(5528): 269-271.
                 cobalt (Ⅲ/Ⅱ) redox electrolyte[J]. The Journal of Physical Chemistry   [32]  PARK J T, KIM D J, KIM D H, et al. A facile graft polymerization
                 C, 2018, 122(13): 7051-7060.                      approach to N-doped TiO 2 heterostructures with enhanced visible-light
            [14]  MANDARI K K, POLICE A K R, DO J Y, et al. Rare earth metal   photocatalytic activity[J]. Materials Letters, 2017, 202: 1-10.
                 Gd influenced defect sites in N doped TiO 2: Defect mediated   [33]  REN B X (任百祥), ZHU L (朱琳). Response surface methodology
                 improved charge transfer for enhanced photocatalytic hydrogen   to optimize the visible light catalytic degradation of azo dye methyl
                 production[J]. International Journal of Hydrogen Energy, 2018,   orange  by carbon modified titanium dioxide[J]. Journal of Jilin
                 43(4): 2073-2082.                                 Normal University (吉林师范大学学报), 2019, 40(1): 89-94.
            [15]  HOU L L, GUAN Z J, ZHANG M, et al. Adjusting the ratio of bulk   [34]  CHEN S (陈适), BI Y J (毕颖洁), CHEN M H (陈敏卉). Preparation
                 single-electron-trapped oxygen vacancies/surface oxygen  vacancies   of boron-silver co-doped titanium dioxide material and its
                 in TiO 2 for efficient photocatalytic hydrogen evolution[J]. Catalysis   photocatalytic performance[J]. Chemical World (化学世界), 2020,
                 Science & Technology, 2018, 8(11): 2809-2817.     61(3): 176-182.
            [16]  THANDAPANI K, KATHIRAVAN M, NAMASIVAYAM E, et al.   [35]  AVILES G O,  ESPINO V J, ROMERO R  R,  et al.  Enhanced
                 Enhanced larvicidal, antibacterial, and photocatalytic efficacy of   photocatalytic activity of titania by co-doping with Mo and W[J].
                 TiO 2 nanohybrids green synthesized using the aqueous leaf extract of   Catalysts, 2018, 8: 1-20.
                 Parthenium hysterophorus[J]. Environmental Science and Pollution   [36]  HU T, YAN J C, HU Y F, et al. Enhancement of the photocatalytic
                 Research, 2018, 25(11): 10328-10339.              activity of N-doped TiO 2 nanograss array films by low-temperature
            [17]  HAO M Y (郝梦玉), YU  K Y  (于开源), LI S J (李思杰),  et al.   sulfur doping[J]. Materials Science  in Semiconductor  Processing,
                 Research progress  of titanium dioxide photocatalytic (P25) coating   2020, 108: 1-8.
                 on the preservation of fruits and  vegetables[J]. Processing of   [37]  HUANG X W, YANG W Q,  ZHANG G S, et al.  Alternative
                 Agricultural Products (农产品加工), 2019, (8): 59-61.     synthesis of nitrogen and carbon co-doped TiO 2  for removing
            [18]  LATHA T S, REDDY M C, MUTHUKONDA S V, et al. In vitro   fluoroquinolone antibiotics in water under visible light[J]. Catalysis
                 and  in vivo  evaluation  of anti-cancer activity: Shape-dependent   Today, 2021, 361: 11-16.
                 properties of  TiO 2 nanostructures[J]. Materials Science  and
                 Engineering: C, 2017, 78: 969-977.                                          (下转第 2258 页)
   37   38   39   40   41   42   43   44   45   46   47