Page 42 - 《精细化工》2021年第11期
P. 42
·2188· 精细化工 FINE CHEMICALS 第 38 卷
参考文献: [19] TIAN H Y, LIU X, LIANG Z Q, et al. Gold nanorods/g-C 3N 4
heterostructures for plasmon-enhanced photocatalytic H 2 evolution in
[1] LIAO G F, GONG Y, ZHANG L, et al. Semiconductor polymeric visible and near-infrared light[J]. Journal of Colloid and Interface
graphitic carbon nitride photocatalysts: The "holy grail" for the Science, 2019, 557: 700-708.
photocatalytic hydrogen evolution reaction under visible light[J]. [20] HUANG J Q, LI G J, ZHOU Z F, et al. Efficient photocatalytic
Energy & Environmental Science, 2019, 12(7): 2080-2147. hydrogen production over Rh and Nb codoped TiO 2 nanorods[J].
[2] PAWAR M, TOPCU S S, GOUMA P. A brief overview of TiO 2 Chemical Engineering Journal, 2018, 337: 282-289.
photocatalyst for organic dye remediation: Case study of reaction [21] WANG P (王苹), LI X Y (李心宇), SHI Z L (时占领), et al. Study
mechanisms involved in Ce-TiO 2 photocatalysts system[J]. Journal on Ag and Ag 2O synergistically enhancing the performance of TiO 2
of Nanomaterials, 2018, 2018: 1-14. photocatalytic hydrogen production[J]. Journal of Inorganic
[3] LU Y H, QIN Z P, WANG N X, et al. TiO 2-incorporated Materials (无机材料学报), 2020, 35(7): 781-788.
polyelectrolyte composite membrane with transformable [22] GNANASEKARAN L, HEMAMALINI R, RAJEDRAN S, et al.
hydrophilicity/hydrophobicity for nanofiltration separation[J]. Chinese Nanosized Fe 3O 4 incorporated on a TiO 2 surface for the enhanced
Journal of Chemical Engineering, 2020, 28(10): 2533-2541. photocatalytic degradation of organic pollutants[J]. Journal of
[4] FUJISHIMA A, HONDA K. Electrochemical photolysis of water at a Molecular Liquids, 2019, 287: 1-29.
semiconductor electrode[J]. Nature, 1972, 238(5358): 37-38. [23] LI N (李楠). Preparation of TiO 2/ZSM-5 mesoporous structure and
[5] FRANK S N, BARD A J. Heterogeneous photocatalytic oxidation of photocatalytic degradation of printing and dyeing wastewater[J].
cyanide ion in aqueous solutions at titanium dioxide powder[J]. Printing and Dyeing Auxiliary (印染助剂), 2019, 36(3): 24-27.
Journal of the American Chemical Society, 1977, 99(1): 303-304. [24] YE X Y (叶信余), YANG L J (杨丽娟), CHEN H (陈红), et al.
[6] GUO Q, ZHOU C Y, MA Z B, et al. Fundamentals of TiO 2 Application of TiO 2/SnO 2 composite hollow spheres in dye-sensitized
photocatalysis: Concepts, mechanisms, and challenges[J]. Advanced solar cells[J]. Acta Molecular Science (分子科学学报), 2020, 36(2):
Materials, 2019, 31: 1-26. 118-124.
[7] LINSEBIGLER A L, LU G, YATES J J T. Photocatalysis on TiO 2 [25] XIAO B C, LIN L Y. Substrate diameter-dependent photovoltaic
surfaces: Principles, mechanisms, and selected results[J]. Chemical performance of flexible fiber-type dye-sensitized solar cells with
Reviews, 1995, 95(3): 735-758. TiO 2 nanoparticle/TiO 2 Nanotube array photoanodes[J]. Nanomaterials,
[8] TANG Y C, HU C, WANG Y Z. Recent advances in mechanisms 2020, 10(1): 1-12.
and kinetics of TiO 2 photocatalysis[J]. Progress in Chemistry, 2002, [26] WANG R, HASHIMOTO K, FUJISHIMA A, et al. Light-induced
14(3): 192-199. amphiphilic surfaces[J]. Nature, 1997, 388(6641): 431-432.
[9] THOMPSON T L, YATES J T. Surface science studies of the [27] ZHANG T J (张太军), BI H (毕晖), ZHANG M (张敏), et al. Study
photoactivation of TiO 2 new photochemical processes[J]. Chemical on the preparation and performance of SiO 2-KH550/TiO 2 sunscreen[J].
Reviews, 2006, 106(10): 4428-4453. Journal of Light Industry (轻工学报), 2019, 34(1): 51-56.
[10] XU J T (徐家通), CHEN X Q (陈小泉), ZHU H L (朱红玲), et al. [28] SAQIB N U, ADNAN R, SHAH I. A mini-review on rare earth
Preparation of nano-α-Fe 2O 3/TiO 2 photocatalyst and its photocatalytic metal-doped TiO 2 for photocatalytic remediation of wastewater[J].
performance[J]. New Chemical Materials (化工新型材料), 2020, Environmental Science and Pollution Research, 2016, 23(16):
48(3): 197-202. 15941-15951.
[11] LEE D G, KIM M, KIM B J, et al. Effect of TiO 2 particle size and [29] LIANG Z W (梁梓薇), WANG J Y (王嘉怡), YANG Q (杨倩).
layer thickness on mesoscopic perovskite solar cells[J]. Applied Preparation and catalytic performance of zirconium-doped titania-based
Surface Science, 2019, 477: 131-136. visible light catalyst[J]. Industrial Catalysis (工业催化), 2020, 28(8):
[12] ZHANG J (张景), YAO Z W (姚州威), LIU L F (刘兰芳). A 42-48.
synthesis method and catalytic performance of small particle size [30] SATO S. Photocatalytic activity of NO x-doped TiO 2 in the visible
nanometer titanium dioxide[J]. Guangzhou Chemical Industry (广州 light region[J]. Chemical Physics Letters, 1986, 123(1/2): 126-128.
化工), 2019, 47(1): 51-53. [31] ASAHI R, MORIKAWA T, OHWAKI T, et al. Visible-light
[13] SON Y J, KANG J S, YOON J, et al. Influence of TiO 2 particle size photocatalysis in nitrogen-doped titanium oxides[J]. Science, 2001,
on dye-sensitized solar cells employing an organic sensitizer and a 293(5528): 269-271.
cobalt (Ⅲ/Ⅱ) redox electrolyte[J]. The Journal of Physical Chemistry [32] PARK J T, KIM D J, KIM D H, et al. A facile graft polymerization
C, 2018, 122(13): 7051-7060. approach to N-doped TiO 2 heterostructures with enhanced visible-light
[14] MANDARI K K, POLICE A K R, DO J Y, et al. Rare earth metal photocatalytic activity[J]. Materials Letters, 2017, 202: 1-10.
Gd influenced defect sites in N doped TiO 2: Defect mediated [33] REN B X (任百祥), ZHU L (朱琳). Response surface methodology
improved charge transfer for enhanced photocatalytic hydrogen to optimize the visible light catalytic degradation of azo dye methyl
production[J]. International Journal of Hydrogen Energy, 2018, orange by carbon modified titanium dioxide[J]. Journal of Jilin
43(4): 2073-2082. Normal University (吉林师范大学学报), 2019, 40(1): 89-94.
[15] HOU L L, GUAN Z J, ZHANG M, et al. Adjusting the ratio of bulk [34] CHEN S (陈适), BI Y J (毕颖洁), CHEN M H (陈敏卉). Preparation
single-electron-trapped oxygen vacancies/surface oxygen vacancies of boron-silver co-doped titanium dioxide material and its
in TiO 2 for efficient photocatalytic hydrogen evolution[J]. Catalysis photocatalytic performance[J]. Chemical World (化学世界), 2020,
Science & Technology, 2018, 8(11): 2809-2817. 61(3): 176-182.
[16] THANDAPANI K, KATHIRAVAN M, NAMASIVAYAM E, et al. [35] AVILES G O, ESPINO V J, ROMERO R R, et al. Enhanced
Enhanced larvicidal, antibacterial, and photocatalytic efficacy of photocatalytic activity of titania by co-doping with Mo and W[J].
TiO 2 nanohybrids green synthesized using the aqueous leaf extract of Catalysts, 2018, 8: 1-20.
Parthenium hysterophorus[J]. Environmental Science and Pollution [36] HU T, YAN J C, HU Y F, et al. Enhancement of the photocatalytic
Research, 2018, 25(11): 10328-10339. activity of N-doped TiO 2 nanograss array films by low-temperature
[17] HAO M Y (郝梦玉), YU K Y (于开源), LI S J (李思杰), et al. sulfur doping[J]. Materials Science in Semiconductor Processing,
Research progress of titanium dioxide photocatalytic (P25) coating 2020, 108: 1-8.
on the preservation of fruits and vegetables[J]. Processing of [37] HUANG X W, YANG W Q, ZHANG G S, et al. Alternative
Agricultural Products (农产品加工), 2019, (8): 59-61. synthesis of nitrogen and carbon co-doped TiO 2 for removing
[18] LATHA T S, REDDY M C, MUTHUKONDA S V, et al. In vitro fluoroquinolone antibiotics in water under visible light[J]. Catalysis
and in vivo evaluation of anti-cancer activity: Shape-dependent Today, 2021, 361: 11-16.
properties of TiO 2 nanostructures[J]. Materials Science and
Engineering: C, 2017, 78: 969-977. (下转第 2258 页)