Page 129 - 《精细化工》2021年第12期
P. 129

第 12 期                 李德丽,等:  坡缕石/Al 掺杂 CdS 复合材料光催化降解罗丹明 B                             ·2491·


            化剂在太阳光下对染料废水的处理。                                       Acta Petrologica ET Mineralogica (岩石矿物学杂志), 2007, 26(4):
                                                                   351-358.
            参考文献:                                              [15]  SENG C E, LEE  C G,  LIEW K Y.  Adsorption of chromium and
                                                                   nickel (Ⅱ) ions on acid- and heat-activated deoiled spent bleaching
            [1]   LIU Y B, LEE J H D, XIA Q, et al. A graphene-based electrochemical   clay[J]. Journal of the American Oil Chemists Society, 2001, 78(8):
                 filter for water purification[J]. Journal of Materials Chemistry A, 2014,   831-835.
                 2(39): 16554-16562.                           [16]  LUO Y T, WANG K, HU T, et al. Controlled synthesis of palygorskite/
            [2]   FORGACS E, CSERHÁTI T, OROS G. Removal of synthetic dyes   Bi 5O 7I hybrid microspheres with high efficient photodegradation of
                 from wastewaters: A review[J]. Environment International, 2004, 30(7):   antibiotics[J]. Colloids and  Surfaces A: Physicochemical and
                 953-971.                                          Engineering Aspects, 2021, 616(1): 126225.
            [3]   MANCIPE S,  MARTINEZ J, PINZON  C,  et al. Effective   [17]  ZHOU W (周伟), LI D H (李登好), FENG L D (冯良东). Degrading
                 photocatalytic degradation of rhodamine B using tin semiconductors   dyeing wastewater  by nano-sized ZnO and attapulgite compounds
                 over hydrotalcite-type  materials under sunlight driven[J]. Catalysis   under natural light[J]. Non-Metallic Mines (非金属矿), 2008, 31(6):
                 Today, 2020, 372: 191-197.                        71-73.
            [4]   JAIN R, MATHUR M, SIKARWAR S, et al. Removal of the hazardous   [18]  ZHANG P Y (张鹏宇), HU Q Y (胡倾月), ZOU Y Q (邹韵琴), et al.
                 dye rhodamine B through photocatalytic and adsorption treatments[J].   Preparation and photocatalytic activity of Ag@AgCl-PAL visible
                 Journal of Environmental Management, 2007, 85(4): 956-964.   light catalyst[J]. Non-Metallic Mines (非金属矿), 2019, 42(5): 6-8.
            [5]   JIANG H, XING Z P, ZHAO T Y, et al. Plasmon Ag nanoparticle/   [19]  LIU H  Y, NIU  C G, GUO  H,  et al. In situ constructing 2D/1D
                 Bi 2S 3 ultrathin nanobelt/oxygen-doped flower-like MoS 2 nanosphere   MgIn 2S 4/CdS heterojunction system  with enhanced photocatalytic
                 ternary heterojunctions for promoting charge separation and enhancing   activity towards treatment of wastewater and H 2 production[J].
                 solar-driven photothermal and photocatalytic performances[J]. Applied   Journal of Colloid and Interface Science, 2020, 576(2): 264-279.
                 Catalysis B: Environmental, 2020, 274(1): 118947.   [20]  CHEN Q H, ZHANG M M, LI J Y, et al. Construction of immobilized
            [6]   AHMED B, KUMAR S, KUMAR S, et al. Shape induced (spherical   0D/1D heterostructure photocatalyst Au/CuS/CdS/TiO 2 NBs with
                 sheets and rods) optical and magnetic properties of CdS nanostructures   enhanced photocatalytic activity towards moxifloxacin degradation[J].
                 with enhanced  photocatalytic activity for photodegradation of   Chemical Engineering Journal, 2020, 389(1): 124476.
                 methylene blue dye under ultra-violet irradiation[J]. Journal of Alloys   [21]  LI C H, DU S W, WANG H M, et al. Enhanced visible-light-driven
                 and Compounds, 2016, 679(15): 324-334.            photocatalytic hydrogen generation using NiCo 2S 4/CdS nanocomposites[J].
            [7]   WU A P, TIAN C G, JIAO Y Q, et al. Sequential two-step hydrothermal   Chemical Engineering Journal, 2019, 378(2): 122089.
                 growth of MoS 2/CdS core-shell heterojunctions for efficient visible   [22]  FENG C, CHEN Z Y, JING J P, et al. Band structure and enhanced
                 light-driven photocatalytic H 2 evolution[J]. Applied Catalysis B:   photocatalytic degradation performance of Mg-doped CdS nanorods[J].
                 Environmental, 2017, 203: 955-963.                Physica B: Physics of Condensed Matter, 2020, 594(1): 412363.
            [8]   JIN J, YU J G, GUO D P, et al. A hierarchical Z-scheme CdS-WO 3   [23]  LI C X (李春霞),  DANG S H (党随虎). Doped with  Ag and Zn
                 photocatalyst with enhanced CO 2 reduction activity[J]. Small, 2015,   effects on electronic structure and optical properties of CdS[J]. Acta
                 11(39): 5262-5271.                                Physica Sinica (物理学报), 2012, 61(1): 017202.
            [9]   LUO M, LIU Y, HU J C, et al. One-pot synthesis of CdS and Ni-doped   [24]  PIAO H, MCINTYRE N S. Oxidation studies of Au-Al alloys using
                 CdS hollow spheres with enhanced photocatalytic activity and   X-ray photoelectron spectroscopy (XPS) and X-ray absorption
                 durability[J]. ACS Applied Materials & Interfaces, 2012, 4(3): 1813-   near-edge structure (XANES)[J].  Surface and  Interface Analysis,
                 1821.                                             2001, 31(9): 874-880.
            [10]  SHI R, YE  H F,  LIANG F,  et al. Interstitial P-doped CdS with   [25]  MA Y L, ZHANG J, WANG Y,  et al. Concerted catalytic and
                 long-lived photogenerated electrons for photocatalytic water splitting   photocatalytic degradation of organic pollutants over CuS/g-C 3N 4
                 without sacrificial agents[J]. Advanced Materials, 2018, 30(6):   catalysts under light and  dark conditions[J]. Journal of  Advanced
                 1705941.                                          Research, 2019, 16(1): 135-143.
            [11]  SHEN Z Y, CHEN G, YU Y G,  et al. Sonochemistry synthesis of   [26]  CAI Z  L,  ZHOU  Y M, MA S S,  et al. Enhanced visible light
                 nanocrystals embedded in a MoO 3-CdS core-shell photocatalyst with   photocatalytic performance of g-C 3N 4/CuS  p-n heterojunctions for
                 enhanced hydrogen production and photodegradation[J]. Journal of   degradation of organic dyes[J]. Journal of Photochemistry  and
                 Colloid & Interface Science, 2012, 412(24): 31-38.   Photobiology A: Chemistry, 2017, 348(1): 168-178.
            [12]  WEI R, PENG Y J, SEAMAN D. The interaction of lignosulfonate   [27]  CHEN M, GUO C S, HOU S, et al. In-situ fabrication of Ag/P-g-C 3N 4
                 dispersants and grinding media in copper-gold flotation from a high   composites with enhanced photocatalytic activity for sulfamethoxazole
                 clay ore[J]. Minerals Engineering, 2013, 50/51(1): 93-98.   degradation[J]. Journal of Hazardous Materials, 2019, 336(2): 219-
            [13]  LI H J (李虎杰), ZHENG Z L (郑自立). Research on the adsorption   228.
                 behavior of palygorskite clay[J]. Multipurpose Utilization of Mineral   [28]  LIU Q, GUO Y Y, CHEN Z H, et al. Constructing a novel ternary
                 Resources (矿产综合利用), 2002, (5): 24-27.             Fe(Ⅲ)/graphene/g-C 3N 4 composite photocatalyst with enhanced visible-
            [14]  LIU Y (刘云), DONG Y H (董元华), MA Y J (马毅杰), et al. Acid   light driven photocatalytic activity via interfacial charge transfer effect[J].
                 activation mechanism of palygorskite clay and its related factors[J].   Applied Catalysis B: Environmental, 2016, 183(1): 231-241.
   124   125   126   127   128   129   130   131   132   133   134