Page 129 - 《精细化工》2021年第12期
P. 129
第 12 期 李德丽,等: 坡缕石/Al 掺杂 CdS 复合材料光催化降解罗丹明 B ·2491·
化剂在太阳光下对染料废水的处理。 Acta Petrologica ET Mineralogica (岩石矿物学杂志), 2007, 26(4):
351-358.
参考文献: [15] SENG C E, LEE C G, LIEW K Y. Adsorption of chromium and
nickel (Ⅱ) ions on acid- and heat-activated deoiled spent bleaching
[1] LIU Y B, LEE J H D, XIA Q, et al. A graphene-based electrochemical clay[J]. Journal of the American Oil Chemists Society, 2001, 78(8):
filter for water purification[J]. Journal of Materials Chemistry A, 2014, 831-835.
2(39): 16554-16562. [16] LUO Y T, WANG K, HU T, et al. Controlled synthesis of palygorskite/
[2] FORGACS E, CSERHÁTI T, OROS G. Removal of synthetic dyes Bi 5O 7I hybrid microspheres with high efficient photodegradation of
from wastewaters: A review[J]. Environment International, 2004, 30(7): antibiotics[J]. Colloids and Surfaces A: Physicochemical and
953-971. Engineering Aspects, 2021, 616(1): 126225.
[3] MANCIPE S, MARTINEZ J, PINZON C, et al. Effective [17] ZHOU W (周伟), LI D H (李登好), FENG L D (冯良东). Degrading
photocatalytic degradation of rhodamine B using tin semiconductors dyeing wastewater by nano-sized ZnO and attapulgite compounds
over hydrotalcite-type materials under sunlight driven[J]. Catalysis under natural light[J]. Non-Metallic Mines (非金属矿), 2008, 31(6):
Today, 2020, 372: 191-197. 71-73.
[4] JAIN R, MATHUR M, SIKARWAR S, et al. Removal of the hazardous [18] ZHANG P Y (张鹏宇), HU Q Y (胡倾月), ZOU Y Q (邹韵琴), et al.
dye rhodamine B through photocatalytic and adsorption treatments[J]. Preparation and photocatalytic activity of Ag@AgCl-PAL visible
Journal of Environmental Management, 2007, 85(4): 956-964. light catalyst[J]. Non-Metallic Mines (非金属矿), 2019, 42(5): 6-8.
[5] JIANG H, XING Z P, ZHAO T Y, et al. Plasmon Ag nanoparticle/ [19] LIU H Y, NIU C G, GUO H, et al. In situ constructing 2D/1D
Bi 2S 3 ultrathin nanobelt/oxygen-doped flower-like MoS 2 nanosphere MgIn 2S 4/CdS heterojunction system with enhanced photocatalytic
ternary heterojunctions for promoting charge separation and enhancing activity towards treatment of wastewater and H 2 production[J].
solar-driven photothermal and photocatalytic performances[J]. Applied Journal of Colloid and Interface Science, 2020, 576(2): 264-279.
Catalysis B: Environmental, 2020, 274(1): 118947. [20] CHEN Q H, ZHANG M M, LI J Y, et al. Construction of immobilized
[6] AHMED B, KUMAR S, KUMAR S, et al. Shape induced (spherical 0D/1D heterostructure photocatalyst Au/CuS/CdS/TiO 2 NBs with
sheets and rods) optical and magnetic properties of CdS nanostructures enhanced photocatalytic activity towards moxifloxacin degradation[J].
with enhanced photocatalytic activity for photodegradation of Chemical Engineering Journal, 2020, 389(1): 124476.
methylene blue dye under ultra-violet irradiation[J]. Journal of Alloys [21] LI C H, DU S W, WANG H M, et al. Enhanced visible-light-driven
and Compounds, 2016, 679(15): 324-334. photocatalytic hydrogen generation using NiCo 2S 4/CdS nanocomposites[J].
[7] WU A P, TIAN C G, JIAO Y Q, et al. Sequential two-step hydrothermal Chemical Engineering Journal, 2019, 378(2): 122089.
growth of MoS 2/CdS core-shell heterojunctions for efficient visible [22] FENG C, CHEN Z Y, JING J P, et al. Band structure and enhanced
light-driven photocatalytic H 2 evolution[J]. Applied Catalysis B: photocatalytic degradation performance of Mg-doped CdS nanorods[J].
Environmental, 2017, 203: 955-963. Physica B: Physics of Condensed Matter, 2020, 594(1): 412363.
[8] JIN J, YU J G, GUO D P, et al. A hierarchical Z-scheme CdS-WO 3 [23] LI C X (李春霞), DANG S H (党随虎). Doped with Ag and Zn
photocatalyst with enhanced CO 2 reduction activity[J]. Small, 2015, effects on electronic structure and optical properties of CdS[J]. Acta
11(39): 5262-5271. Physica Sinica (物理学报), 2012, 61(1): 017202.
[9] LUO M, LIU Y, HU J C, et al. One-pot synthesis of CdS and Ni-doped [24] PIAO H, MCINTYRE N S. Oxidation studies of Au-Al alloys using
CdS hollow spheres with enhanced photocatalytic activity and X-ray photoelectron spectroscopy (XPS) and X-ray absorption
durability[J]. ACS Applied Materials & Interfaces, 2012, 4(3): 1813- near-edge structure (XANES)[J]. Surface and Interface Analysis,
1821. 2001, 31(9): 874-880.
[10] SHI R, YE H F, LIANG F, et al. Interstitial P-doped CdS with [25] MA Y L, ZHANG J, WANG Y, et al. Concerted catalytic and
long-lived photogenerated electrons for photocatalytic water splitting photocatalytic degradation of organic pollutants over CuS/g-C 3N 4
without sacrificial agents[J]. Advanced Materials, 2018, 30(6): catalysts under light and dark conditions[J]. Journal of Advanced
1705941. Research, 2019, 16(1): 135-143.
[11] SHEN Z Y, CHEN G, YU Y G, et al. Sonochemistry synthesis of [26] CAI Z L, ZHOU Y M, MA S S, et al. Enhanced visible light
nanocrystals embedded in a MoO 3-CdS core-shell photocatalyst with photocatalytic performance of g-C 3N 4/CuS p-n heterojunctions for
enhanced hydrogen production and photodegradation[J]. Journal of degradation of organic dyes[J]. Journal of Photochemistry and
Colloid & Interface Science, 2012, 412(24): 31-38. Photobiology A: Chemistry, 2017, 348(1): 168-178.
[12] WEI R, PENG Y J, SEAMAN D. The interaction of lignosulfonate [27] CHEN M, GUO C S, HOU S, et al. In-situ fabrication of Ag/P-g-C 3N 4
dispersants and grinding media in copper-gold flotation from a high composites with enhanced photocatalytic activity for sulfamethoxazole
clay ore[J]. Minerals Engineering, 2013, 50/51(1): 93-98. degradation[J]. Journal of Hazardous Materials, 2019, 336(2): 219-
[13] LI H J (李虎杰), ZHENG Z L (郑自立). Research on the adsorption 228.
behavior of palygorskite clay[J]. Multipurpose Utilization of Mineral [28] LIU Q, GUO Y Y, CHEN Z H, et al. Constructing a novel ternary
Resources (矿产综合利用), 2002, (5): 24-27. Fe(Ⅲ)/graphene/g-C 3N 4 composite photocatalyst with enhanced visible-
[14] LIU Y (刘云), DONG Y H (董元华), MA Y J (马毅杰), et al. Acid light driven photocatalytic activity via interfacial charge transfer effect[J].
activation mechanism of palygorskite clay and its related factors[J]. Applied Catalysis B: Environmental, 2016, 183(1): 231-241.