Page 160 - 《精细化工》2021年第12期
P. 160

·2522·                            精细化工   FINE CHEMICALS                                 第 38 卷

            百分率减小。                                             [16]  IMRAN A  B, ESAKI K, GOTOH H,  et al. Extremely stretchable
                                                                   thermosensitive hydrogels by introducing slide-ring  polyrotaxane
                (3)与 DN0 相比,DN1~DN5 均具有抗菌抗氧
                                                                   cross-linkers and ionic groups into the polymer network[J].  Nature
            化作用以及良好生物相容性。其中,DN1 的大肠杆菌                              Communications, 2014, 5(1): 1-8.
            和金黄色葡萄球菌抑菌带宽度分别为 4.0 和 3.5 mm,                     [17]  LI Z, SU S, YU L, et al. Preparation of a photo- and thermo-responsive
                                                                   topological gel  from anthracene-modified polyrotaxanes[J]. Soft
            羟基自由基清除率为 28%,抗菌抗氧化效果最佳,                               Matter, 2018, 14(15): 2767-2771.
            可以作为伤口敷料的理想候选材料。                                   [18]  CUI W, JI J, CAI  Y F, et al. Robust, anti-fatigue, and self-healing
                                                                   graphene oxide/hydrophobically associated composite hydrogels and
            参考文献:                                                  their use as recyclable adsorbents  for dye wastewater treatment[J].
                                                                   Journal of Materials Chemistry A, 2015, 3: 17445-17458.
            [1]   MU S,  YANG  W J, HUANG G L. Antioxidant activities and   [19]  MEHRALI M, THAKUR A, PENNISI C P, et al. Nano reinforced
                 mechanisms of polysaccharides[J]. Chemical Biology & Drug Design,   hydrogels for tissue engineering: Biomaterials that are compatible
                 2020, 97(3): 628-632.                             with load-bearing and electroactive tissues[J]. Advanced Materials,
            [2]   LI C P, YONG M Z, ZHEN Y Z, et al. Chemical structure and effects   2017, 29(8): 1603612.
                 of antioxidation and against α-glucosidase of natural polysaccharide   [20]  WANG Y X, WANG Z C, WU K L,  et al. Synthesis of cellulose-
                 from  Glycyrrhiza inflata Batalin[J]. International Journal of   based double-network hydrogels demonstrating  high strength,
                 Biological Macromolecules, 2020, 155: 560-571.     self-healing, and antibacterial properties[J]. Carbohydrate Polymers,
            [3]   SINGH H, SINGH N B. Putrescine ameliorates detrimental effects of   2017, 168: 112-120.
                 2,4-D herbicide on growth and antioxidant enzymes activity of   [21]  GAN S C, XU B, ZHANG X, et al. Chitosan derivative-based double
                 tomato[J]. International Journal of  Vegetable Science, 2021, 27(4):   network  hydrogels  with high  strength, high fracture toughness and
                 327-343.                                          tunable  mechanics[J].  International  Journal  of  Biological
            [4]   ZMEJKOSKI D Z, MARKOVIC Z  M, BUDIMIR M  D,  et al.   Macromolecules, 2019, 137: 495-503.
                 Photoactive and antioxidant nanochitosan dots/biocellulose hydrogels   [22]  CUI C, SHAO C Y, MENG  L,  et al. High-strength, self-adhesive,
                 for wound healing treatment[J]. Materials Science & Engineering   and strain-sensitive chitosan/poly(acrylic acid) double-network
                 C-Materials for Biological Applications, 2021, 122: 111925.     nanocomposite hydrogels fabricated by salt-soaking strategy for
            [5]   ABHISHEK S H,  JIN J B, MIN S L,  et al. Antioxidant and anti-   flexible sensors[J]. ACS Applied Materials & Interfaces, 2019,
                 inflammatory activities of  prussian blue nanozyme promotes full-   11(42): 39228-39237.
                 thickness skin wound healing[J]. Materials Science & Engineering C,   [23]  MEANS A K, SHRODE C S, WHITNEY L V, et al. Double network
                 2021, 119: 111596.                                hydrogels that mimic the modulus, strength, and lubricity of cartilage[J].
            [6]   NA Y, WOO J, CHOI W I, et al. Alpha-tocopherol-loaded reactive   Biomacromolecules, 2019, 20(5): 2034-2042.
                 oxygen species-scavenging ferrocene nanocapsules with high   [24]  STUBBE B, MIGNON  A, DECLERCQ  H,  et al. Development  of
                 antioxidant efficacy for wound  healing[J]. International  Journal  of   gelatin-alginate hydrogels for burn wound treatment[J]. Macromolecular
                 Pharmaceutics, 2021, 596: 120205.                 Bioscience, 2019, 19(8): 1900123.
            [7]   COPPARI S, COLOMBA M, FRATERNALE D, et al. Antioxidant   [25]  CHEN Q, ZHU L, ZHAO C, et al. A Robust, one-pot synthesis of
                 and anti-inflammaging ability of prune (Prunus Spinosa L.) extract   highly mechanical and recoverable double network hydrogels using
                 result  in  improved wound healing efficacy[J]. Antioxidants, 2021,   thermoreversible sol-gel polysaccharide[J].  Advanced Materials,
                 10(3): 374.                                       2013, 25(30): 4171-4176.
            [8]   CHEN Z, HE Y N, CHEN Z J, et al. Effect of polysaccharides from   [26]  SHIN E J, CHOI S M. Advances in waterborne polyurethane-based
                 Bletilla striata  on the healing of dermal wounds in  mice[J].   biomaterials for biomedical applications[J]. Advances in Experimental
                 Evidence-Based Complementary and Alternative Medicine, 2019,   Medicine and Biology, 2018, 1077: 251-283.
                 2019: 9212314 .                               [27]  BANKOTI K, ARUN P R, DATTA S, et al. Accelerated healing of
            [9]   WANG Y, LIU J J, LI Q, et al. Two natural glucomannan polymers,   full thickness dermal wounds by macroporous waterborne polyurethane-
                 from Konjac and Bletilla, as bioactive materials for pharmaceutical   chitosan hydrogel scaffolds[J]. Materials Science & Engineering C,
                 applications[J]. Biotechnology Letters, 2015, 37(1): 1-8.     2017, 81: 133-143.
            [10]  ZUO  Y J (左亚杰), LIAO Q W (廖庆文),  WANG Y H  (王宇红).   [28]  XIAO K C, WANG Z Y, WU Y J, et al. Biodegradable, anti-adhesive
                 Progress on drug research for treating burn trauma[J]. Hunan Traditional   and tough polyurethane hydrogels crosslinked by triol crosslinkers[J].
                 Chinese Medicine Herald (湖南中医药导报), 2002, 8(3): 106-108.     Journal of Biomedical Materials Research Part A, 2019, 107(10):
            [11]  XU D L, PAN Y C, CHEN J S. Chemical constituents, pharmacologic   2205-2221.
                 properties, and clinical applications of Bletilla striata[J]. Frontiers in   [29]  GUAN S M (官淑敏). Preparation and properties  of pH sensitive
                 Pharmacology, 2019, 10: 1168.                     carboxymethyl chitosan  hydrogels[D]. Chongqing: Chongqing
            [12]  JI X L, YIN M S, NIE  H,  et al.  A review of isolation, chemical   University (重庆大学), 2018.
                 properties, and bioactivities of polysaccharides from Bletilla striata[J].   [30]  ZHANG X, LI Y, MA Z J, et al. Modulating degradation of sodium
                 BioMed Research International, 2020, DOI: 10.1155/2020/5391379 .     alginate/bioglass hydrogel for improving tissue infiltration and
            [13]  HUANG Y B, SHI F, WANG L, et al. Preparation and evaluation of   promoting wound healing[J]. Bioactive Materials, 2021, 6(11):
                 Bletilla striata polysaccharide/carboxymethyl chitosan/carbomer 940   3692-3704.
                 hydrogel for wound healing[J]. International Journal of Biological   [31]  YAO Z (姚周), FAN H  L (范宏蕾),  TIAN Z (田振),  et al.
                 Macromolecules, 2019, 132: 729-737.               Modulating  degradation of sodium  alginate/bioglass hydrogel for
            [14]  YANG L, HAN Z, CHEN C H, et al. Novel probiotic-bound oxidized   improving tissue infiltration and promoting wound healing[J]. Fine
                 Bletilla striata polysaccharide-chitosan composite hydrogel[J].   Chemicals (精细化工), 2021, 38(3): 539-545.
                 Materials Science & Engineering C, 2020, 117: 111265.     [32]  SIROPORN T, JUTARAT P. Characterization of an antibacterial
            [15]  LIU K (刘坤). Study on  preparation  and modification  of chitosan   wound dressing  from basil seed (Ocimum basilicum L.) mucilage-
                 hydrogel[D]. Wuhan: Wuhan University of Technology (武汉理工大  ZnO nanocomposite[J]. International Journal of  Biological
                 学), 2019.                                         Macromolecules, 2019, 135: 133-140.
   155   156   157   158   159   160   161   162   163   164   165