Page 194 - 《精细化工》2021年第12期
P. 194

·2556·                            精细化工   FINE CHEMICALS                                 第 38 卷

            羟胺和氧代铵阳离子之间可以通过电子转移相互转                                (3)通过机理研究发现,H 2 O 2 可以实现自由基
            化 [16-17] 。因此,三者可作为有效的氧化还原对,通                      的再生及循环使用。
            过可逆的得失电子完成氧化还原反应过程。NIT-Ph-                             本文对 NIT-Ph-p-BEN 氮氧自由基降解染料废
            p-BEN 氮氧自由基降解甲基橙、甲基蓝或罗丹明 B                         水进行了初步的探究,为研发新型染料污水降解剂
            的机理见图 9。有研究表明            [31-33] ,TEMPO 作为氧化       提供了初步思路。然而,将 NIT 类氮氧自由基及其
            剂是通过得失电子转化为氧化活性更强的氧代铵阳                             衍生物应用于治理废水领域仍需更深入的探究。
            离子,氧代铵阳离子进一步参与氧化还原反应。在
                                                               参考文献:
            NIT-Ph-p-BEN 氮氧自由基降解甲基橙、甲基蓝或罗
                                                               [1]   REN G F (任钢锋). Study on the treatment of industrial printing and
            丹明 B 的实验中,当向降解体系中加入 NIT-Ph-p-
                                                                   dyeing wastewater in China[J]. Energy Conservation & Environmental
            BEN 氮氧自由基时,活泼的 NIT-Ph-p-BEN 氮氧自                        Protection (节能与环保), 2021, (4): 76-78.
            由基也会被体系的 H 2 O 2 氧化成为强氧化剂氧代铵                       [2]   ZHOU Y (周园), LI H B (李怀波), ZHENG K K (郑凯凯),  et al.
                                                                   Analysis of  difficulties in meeting discharge standard and DOM
            阳离子,氧代铵阳离子首先将部分染料氧化降解,                                 specific during treating centralized wastewater in the printing and dyeing
                                                                   industrial park[J]. Chinese Journal of Environmental Engineering (环
            同时自身被还原为羟胺;而羟胺又被体系中的 H 2 O 2
                                                                   境工程学报), 2020, 14(8): 2193-2202.
            通过 NIT-Ph-p-BEN 氮氧自由基继续氧化为原来的                      [3]   ZHANG H (张昊), LI Y X (李雅兴), ZHANG Y (张毅), et al.
            氧代铵阳离子结构,使得未被降解的染料被新生成                                 Synthesis of starch-based sulfonic ion exchange resin and its
                                                                   adsorption properties of dyes[J]. Fine Chemicals (精细化工), 2020,
            的氧代铵阳离子继续氧化降解,所以 H 2 O 2 的加入使
                                                                   37(1): 135-146.
            NIT-Ph-p-BEN 氮氧自由基得到再生,从而实现了                       [4]   MITTAL H, MAITY A, RAY S S. Effective removal of cationic dyes
                                                                   from aqueous solution using gum ghatti-based biodegradable hydrogel[J].
            NIT-Ph-p-BEN 氮氧自由基的循环使用。
                                                                   International Journal of Biological Macromolecules, 2015, 79(3): 8-20.
                                                               [5]   WANG H, QUAN B X, BO G Z, et al. Advanced oxidation treatment
                                                                   of dissolved organic matter from wastewater treatment plant secondary
                                                                   effluent  using  scattering electrical reactor[J]. Journal of Cleaner
                                                                   Production, 2020, 267: 1-9.
                                                               [6]   BOCZKAJ G, FERNANDES A. Wastewater treatment by means of
                                                                   advanced oxidation processes at basic pH conditions: A review[J].
                                                                   Chemical Engineering Journal, 2017, 320: 608-633.
                                                               [7]   ZHAO L H (赵丽红), NIE F (聂飞). Research progress in advanced
                                                                   oxidation technology for water treatment[J]. Science Technology and
                                                                   Engineering (科学技术与工程), 2019, 19(10): 1-9.
                                                               [8]   LIN Z Y, XIAO J, YAN J H, et al. Ag/AgCl plasmonic cubes with
                                                                   ultrahigh activity as  advanced visible-light photocatalysts for
                                                                   photodegrading dyes[J]. Journal of Materials Chemistry A, 2015,
                                                                   3(14): 7649-7658.
                                                               [9]   HE Z  L, QUE W X, YIN X  T, et  al. Hydrogen titanium oxide
                                                                   hydrate: Excellent performance on degradation of methyl blue in
                     图 9  NIT-Ph-p-BEN 的降解机理图                      aqueous solutions[J]. RSC Advances, 2014, 4(75): 39678-39683.
                Fig. 9    Degradation mechanism of NIT-Ph-p-BEN   [10]  LU W Y, XU T F, WANG Y, et al. Synergistic photocatalytic properties
                                                                   and mechanism of g-C 3N 4 coupled with zinc phthalocyanine catalyst
                                                                   under visible light irradiation[J]. Applied Catalysis B: Environmental,
            3   结论                                                 2016, 180: 20-28.
                                                               [11]  WANG W T (王文涛), LAI X T (赖欣婷), HE X B (何旭斌), et al.
                                                                   Degradation  of dye wastewater by reductive organic acids coupled
                (1)当甲基橙质量浓度为 15 mg/L,NIT-Ph-p-BEN                  with ferric supported activated carbon fibers[J]. Fine Chemicals (精
            氮氧自由基和 H 2O 2 的加入量分别为 0.15 g/L 和                       细化工), 2021, 38(5): 1023-1029.
                                                               [12]  COTRIM  A P, HYODO F, MATSUMOTO K I, et al. Differential
            30 mmol/L 时,在 1 h 内 NIT-Ph-p-BEN 氮氧自由基
                                                                   radiation protection of salivary glands versus tumor by Tempol with
            对甲基橙的降解率达 94.26%。且在 5 次循环实验后,                          accompanying tissue assessment of Tempol by  magnetic resonance
                                                                   imaging[J]. Clinical Cancer Research, 2007, 13(16): 4928-4933.
            NIT-Ph-p-BEN 氮氧自由基对甲基橙的降解率仍可
                                                               [13]  WANG J (王剑).  Syntheses, structures and  magnetism of some
            以达到 83.74%。  (2)NIT-Ph-p-BEN 氮氧自由基                     bridged complexes based on nitronyl nitroxide[D]. Nanjing: Nanjing
            对甲基橙、甲基蓝和罗丹明 B 具有良好的降解效果,                              University (南京大学), 2016.
                                                               [14]  CASTAGN R, VITA F, DANIELE E, et al. Nitroxide radicals reduce
            在 NIT-Ph-  p-BEN 氮氧自由基的质量浓度为                           shrinkage in acrylate-based holographic gratings[J]. Optical Materials,
            0.15 g/L,H 2 O 2 的浓度为 30 mmol/L,甲基橙、甲基                 2007, 30(4): 539-544.
                                                               [15]  NAKATSUJI S, ANZAI H. Recent progress in the development of
            蓝和罗丹明 B 的质量浓度均为 15 mg/L,降解 60 min                      organomagnetic  materials based on neutral nitroxide radicals and
            时,甲基橙、甲基蓝、罗丹明 B 的降解率分别为                                charge transfer complexes derived from nitroxide radicals[J]. Journal
                                                                   of Materials Chemistry, 1997, 7(11): 2161-2174.
            94.26%、60.80%、49.13%,表明 NIT-Ph-p-BEN 氮             [16]  MITCHELL J B, RUSSO A, KUPPUSAMY P, et al. Radiation, radicals,
            氧自由基对甲基橙具有更高的降解率。                                      and images[J]. Annals of the New York Academy of Sciences, 2000,
   189   190   191   192   193   194   195   196   197   198   199