Page 203 - 《精细化工》2021年第12期
P. 203
第 12 期 秦梓喻,等: 木质素复合细菌纤维素材料的制备及其吸油性能 ·2565·
[6] CHEN X M, JUSTIN A W B, GARIMELLA S V. Continuous Preparation and characterization of lignin-based superhydrophobic
oil-water separation using polydimethylsiloxane-functionalized coatings[J]. Transactions of China Pulp and Paper (中国造纸学报),
melamine sponge[J]. Industrial & Engineering Chemistry Research, 2019, 34(3): 18-23.
2016, 55(12): 3596-3602. [22] ZHANG Z H (张召慧), WU C J (吴朝军), YU D M (于冬梅), et al.
[7] GUI X C, WEI J Q, WANG K L, et al. Carbon nanotube sponges[J]. Research progress in the preparation of lignin-based adsorbents[J].
Advanced Materials, 2010, 22(5): 617-621. China Pulp & Paper (中国造纸), 2021, 40(1): 106-117.
[8] LIU D, WANG T. Instability of hydrophobic and viscoelastic [23] TAO Y Z (陶用珍), GUAN Y T (管映亭). The chemical structure of
polymer thin films in water at room temperature[J]. Journal of lignin and its application[J]. Journal of Cellulose Science and
Physics: Condensed Matter, 2013, 25(41): 415101. Technology (纤维素科学与技术), 2003, 11(1): 44-57.
[9] WEI W (卫威), DU Y Y (杜莹莹), LEI Y P (雷艳萍), et al. Study on [24] CAO S L, PU Y Q, STUDER M, et al. Chemical transformations of
preparation and performances of cellulose-based modified oil populus trichocarpa during dilute acid pretreatment[J]. RSC Advances,
absorbent material[J]. Paper Science & Technology (造纸科学与技 2012, 2(29): 10925-10936.
术), 2017, 34(1): 7-11. [25] KACIK F, LUPTAKOVA J, SMIRA P, et al. Chemical alterations of
[10] WANG J T, ZHENG Y, WANG A Q. Superhydrophobic kapok fiber pine wood lignin during heat sterilization[J]. Bioresources, 2016,
oil-absorbent: Preparation and high oil absorbency[J]. Chemical 11(2): 3442-3452.
Engineering Journal, 2012, 213: 1-7. [26] LI H F, ZHANG Q S, GAO P, et al. Preparation and characterization
[11] ZHENG Y, WANG J T, ZHU Y F, et al. Research and application of of graft copolymer from dealkaline lignin and styrene[J]. Carbohydrate
kapok fiber as an absorbing material: A mini review[J]. Journal of Polymers, 2015, 132(17): 1102-1110.
Environmental Sciences, 2015, 27: 21-32. [27] AMATURRAHIM S, GEA S, NASUTION D, et al. Preparation of
[12] IGUCHI M, YAMANAKA S, BUDHIONO A. Bacterial graphene oxide/bacterial cellulose nanocomposite via in situ process
cellulose—A masterpiece of nature's arts[J]. Journal of Materials in agitated culture[J]. Asian Journal of Chemistry, 2018, 27: 3188-3196.
Science, 2000, 35(2): 261-270. [28] WANG H H (王欢欢). Research on preparation and performance of
[13] LI Z M (李治明), RONG R (荣荣), YIN X Q (尹学琼), et al. conductive polymer/bacterial cellulose nanocomposite[D]. Nanjing:
Research progress of preparation of bacterial cellulose and its Nanjing University of Science and Technology (南京理工大学),
adsorption for metal ions[J]. Fine Chemicals (精细化工), 2018, 2012.
35(5): 721-727. [29] HAENSEL T, REINMOLLER M, LORENZ P, et al. Valence band
[14] JAGANNATH A, KALAISELVAN A, MANJUNATHA S, et al. The structure of cellulose and lignin studied by XPS and DFT[J].
effect of pH, sucrose and ammonium sulphate concentrations on the Cellulose, 2012, 19(3): 1005-1011.
production of bacterial cellulose (Nata-de-coco) by Acetobacter [30] RODRIGUES P C, MURARO M, GARCIA C M, et al. Polyaniline/
xylinum[J]. World Journal of Microbiology and Biotechnology, 2008, lignin blends: Thermal analysis and XPS[J]. European Polymer
24(11): 2593-2599. Journal, 2001, 37(11): 2217-2223.
[15] SHUI C Y (税朝毅), HU X L (胡秀林), ZHANG W (张维), et al. [31] BERLIOZ S, MOLINA S, NISHIYAMA Y, et al. Gas-phase surface
Research progress of composite bacterial cellulose materials[J]. Prev esterification of cellulose microfibrils and whiskers[J]. Biomacromolecules,
Med Trib (预防医学论坛), 2020, 26(10):787-792. 2009, 10(8): 2144-2151.
[16] CHENG Z ( 程峥 ). Synthesis of bacterial cellulose and its [32] XU Y F (徐艳芳), XU G B (徐广标). Preparation of kapok fiber
high-valued application[D]. Guangzhou: South China University of power and its oil sorption performance[J]. Journal of Donghua
Technology (华南理工大学), 2019. University (Natural Science) (东华大学学报: 自然科学版), 2021,
[17] HALIB N, ANMAD I, GRASSI M, et al. The remarkable 47(1): 7-13, 27.
three-dimensional network structure of bacterial cellulose for tissue [33] YAN H Q (闫红芹), ZHENG W R (郑文瑞), ZHANG G Y (张桂玉),
engineering applications[J]. International Journal of Pharmaceutics, et al. Preparation of hydrophobic/oleophilic luffa and its application
2019, 566: 631-640. inoil-water separation[J]. Chemical Industry and Engineering
[18] CAMARGO M S A, CERCAL A P, SILVEIRA V, et al. Evaluation of Progress (化工进展), 2021, 40(5): 2893-2899.
wet bacterial cellulose degradation in different environmental [34] PAN Y W (潘奕雯), HAN C G (韩昌贵),LIU Q (刘琦), et al.
conditions[J]. Macromolecular Symposia, 2020, 394(1): 2000149. Performance analysis of natural oil absorption material using waste
[19] SAINDAANE U V, SONI S, MENGHANI J V. Recent research bagasse as raw material[J]. New Chemical Materials (化工新型材),
status on synthesis and characterization of natural fibers reinforced http://kns.cnki.net/kcms/detail/11.2357.TQ.20210511.1726.579.html.
polymer composites and modern friction materials—An overview[J]. [35] ZHANG M L, JIANG S, HAN F Y, et al. Anisotropic cellulose
Materials Today: Proceedings, 2020, 26: 1616-1620. nanofiber/chitosan aerogel with thermal management and oil
[20] ZHANG Y, CHEN M Q, WANG H, et al. Research progress of absorption properties[J]. Carbohydrate Polymers, 2021, 264:118033.
lignin-based materials[J]. Biomass Chemical Engineering, 2012, [36] LI Z, SHAO L, HU W, et al. Excellent reusable chitosan/cellulose
46(5): 45-52. aerogel as an oil and organic solvent absorbent[J]. Carbohydrate
[21] ZHANG Y Q (张雨晴), WANG X A (王玺傲), WANG X (王兴), et al. Polymers, 2018, 191: 183-190.