Page 21 - 《精细化工》2021年第12期
P. 21
第 12 期 洪 帆,等: 细菌纤维素的功能化改性研究进展 ·2383·
antibacterial materials[J]. Nano-Micro Letters, 2020, 12(1): 1-23. Journal of Clothing Science & Technology, 2019, 31(5): 644-652.
[2] GOLUBNITSCHAJA O, COSTIGLIOLA V, GRECH G, et al. EPMA [20] PHOMRAK S, NIMPAIBOON A, ZHANG B M, et al. Natural
World Congress: Traditional forum in predictive, preventive and rubber latex foam reinforced with micro- and nanofibrillated
personalised medicine for multi-professional consideration and cellulose via dunlop method[J]. Polymers, 2020, 12(9): E1959.
consolidation[J]. EPMA Journal, 2019, 8(1): 1-54. [21] SAI H Z, JIN Z Q, WANG Y T, et al. Facile and green route to
[3] HUANG Y, ZHENG M B, LIN Z X, et al. Flexible cathodes and fabricate bacterial cellulose membrane with superwettability for
multifunctional interlayers based on carbonized bacterial cellulose oil-water separation[J]. Advanced Sustainable Systems, 2020, 4(7):
for high performance lithium-sulfur batteries[J]. Journal of Materials 2000042.
Chemistry, 2015, 3(20): 10910-10918. [22] HAMEDI S, SHOJIAOSADATI S A, NAJAFI V, et al. A novel
[4] WAHID F, HU X H, CHU L Q, et al. Development of bacterial double-network antibacterial hydrogel based on aminated bacterial
cellulose/chitosan based semi-interpenetrating hydrogels with cellulose and schizophyllan[J]. Carbohydrate Polymers, 2020, 229:
improved mechanical and antibacterial properties[J]. International 115383.
Journal of Biological Macromolecules, 2019, 122: 380-387. [23] LOTFIMAN S, BIAK D R A, TI T B, et al. Influence of date syrup
[5] KHAN H, KADAM A, DUTT D. Studies on bacterial cellulose as a carbon source on bacterial cellulose production by Acetobacter
produced by a novel strain of lactobacillus genus[J]. Carbohydrate xylinum 0416[J]. Advances in Polymer Technology, 2018, 37(4):
Polymers, 2020, 229: 115513. 1085-1091.
[6] REVIN V V, LIYAS’KINA E V, SAPUNOV N B, et al. Isolation and [24] LI Z, WANG L F, HUA J C, et al. Production of nano bacterial
characterization of the strains producing bacterial cellulose[J]. cellulose from waste water of candied jujube-processing industry
Microbiology, 2020, 89(1): 86-95. using Acetobacter xylinum[J]. Carbohydrate Polymers, 2015, 120:
[7] GERMA F, PARTE B, SHELLA P S, et al. Current progress on the 115-119.
production modification and applications of bacterial cellulose[J]. [25] SAI H Z, ZHANG J, JIN Z Q, et al. Robust silica-cellulose
Critical Reviews in Biotechnology, 2020, 40(3): 397-414. composite aerogels with a nanoscale interpenetrating network
[8] LEE K Y, BULDDUM G, MANTALARIS A, et al. More than meets structure prepared using a streamlined process[J]. Polymers, 2020,
the eye in bacterial cellulose: Biosynthesis, bioprocessing and 12(4): 807.
applications in advanced fiber composites[J]. Macromolecular [26] SUN B J, ZHANG L, WEI F, et al. In situ structural modification of
Bioscience, 2014, 14(1): 10-32. bacterial cellulose by sodium fluoride[J]. Carbohydrate Polymers,
[9] DONG H H, CHOI W S, KIM T Y, et al. Enhanced production of 2020, 231: 115765.
bacterial cellulose in Komagataeibacter xylinus via tuning of [27] KNOLLER A, WIDENMEYER M, BILL J, et al. Fast-growing
biosynthesis genes with synthetic RBS[J]. Journal of Microbiology bacterial cellulose with outstanding mechanical properties via
and Biotechnology, 2020, 30(9): 1430-1435. cross-linking by multivalent ions[J]. Materials, 2020, 13(12): E2838.
[10] FLOREA M, HAGEMANN H, SANTOSA G, et al. Engineering [28] YU K, AUBINTAM M E. Bacterially grown cellulose/graphene
control of bacterial cellulose production using a genetic toolkit and a oxide composites infused with γ-poly(glutamic acid) as
new cellulose-producing strain[J]. Proceedings of the National biodegradable structural materials with enhanced toughness[J]. ACS
Academy of Sciences of the United States of America, 2016, Applied Nano Materials, 2020, 3(12): 12055-12063.
113(24): E3431-E3440. [29] YU K, BALASUBRAMANIAN S, PAHLAVANI H, et al. Spiral
[11] KUO C H, TENG H Y, LEE C K. Knock-out of glucose honeycomb microstructured bacterial cellulose for increased strength
dehydrogenase gene in Gluconacetobacter xylinus for bacterial and toughness[J]. ACS Applied Materials & Interfaces, 2020, 12(45):
cellulose production enhancement[J]. Biotechnology and Bioprocess 50748-50755.
Engineering, 2015, 20(1): 18-25. [30] GUAN Q F, ZIMENGA H, ZHU Y B, et al. Bio-inspired
[12] QUAN V M, LI B, SUKYAI P. Bacterial cellulose modification using lotus-fiber-like spiral hydrogel bacterial cellulose fibers[J]. Nano
static magnetic field[J]. Cellulose, 2020, 27(10): 5581-5596. Letters, 2021, 21(2): 952-958.
[13] YIN N, CHEN S, LI Z, et al. Porous bacterial cellulose prepared by a [31] LIANG Q Q, ZHANG D, JI P, et al. High-strength superstretchable
facile surfactant-assisted foaming method in azodicarbonamide- helical bacterial cellulose fibers with a "self-fiber-reinforced
NaOH aqueous solution[J]. Materials Letters, 2012, 81: 131-134. structure"[J]. ACS Applied Materials & Interfaces, 2020, 13(1):
[14] YIN N, STILWELL M D, SANTOS T M, et al. Agarose 1545- 1554.
particle-templated porous bacterial cellulose and its application in [32] SHIM E, KIM H R. Coloration of bacterial cellulose using in situ and
cartilage growth in vitro[J]. Acta Biomaterialia, 2015, 12(1): ex situ methods[J]. Textile Research Journal, 2019, 89(7): 1297-
129-138. 1310.
[15] ZHANG H, XU X R, CHEN C T, et al. In situ controllable [33] MALES L, FAKIN D, BRACIC M, et al. Efficiency of differently
fabrication of porous bacterial cellulose[J]. Materials Letters, 2019, processed membranes based on cellulose as cationic dye
249: 104-107. adsorbents[J]. Nanomaterials, 2020, 10(4): 0642.
[16] KHAMKEAW A, ASAVMONGKOLKUL T, PERNGYAI T, et al. [34] ARITONANG H F, KAMEA O E, KOLEANGAN H, et al.
Interconnected micro, meso, and macro porous activated carbon from Biotemplated synthesis of Ag-ZnO nanoparticles/bacterial cellulose
bacterial nanocellulose for superior adsorption properties and nanocomposites for photocatalysis application[J]. Polymer-Plastics
effective catalytic performance[J]. Molecules, 2020, 25(18): E4063. Technology and Materials, 2020, 59(12): 1292-1299.
[17] BAI Q H, SHEN Y H, ASOH T A, et al. Controlled preparation of [35] HU J Y, WU D S, FENG Q, et al. Soft high-loading TiO 2 composite
interconnected 3D hierarchical porous carbons from bacterial biomaterial film as an efficient and recyclable catalyst for removing
cellulose-based composite monoliths for supercapacitors[J]. methylene blue[J]. Fibers and Polymers, 2020, 21(8): 1760-1766.
Nanoscale, 2020, 12(28): 15261-15274. [36] ŻYWICKA A, FIJAKOWSKI K, JUNKA A F, et al. Modification of
[18] GALDINO C J S, MAIA A D, MEIRA H M, et al. Use of a bacterial bacterial cellulose with quaternary ammonium compounds based on
cellulose filter for the removal of oil from wastewater[J]. Process fatty acids and amino acids and the effect on antimicrobial
Biochemistry, 2020, 91: 288-296. activity[J]. Biomacromolecules, 2018, 19(5): 1528-1538.
[19] DOMSKIENE J, SEDERAVICIUTE F, SIMONAITYTE J. [37] YANG M N, WARD J, CHOY K L. Nature-inspired bacterial
Kombucha bacterial cellulose for sustainable fashion[J]. International cellulose/methylglyoxal (BC/MGO) nanocomposite for broad-