Page 21 - 《精细化工》2021年第12期
P. 21

第 12 期                        洪   帆,等:  细菌纤维素的功能化改性研究进展                                 ·2383·


                 antibacterial materials[J]. Nano-Micro Letters, 2020, 12(1): 1-23.       Journal of Clothing Science & Technology, 2019, 31(5): 644-652.
            [2]   GOLUBNITSCHAJA O, COSTIGLIOLA V, GRECH G, et al. EPMA   [20]  PHOMRAK S, NIMPAIBOON A, ZHANG  B M,  et al. Natural
                 World Congress:  Traditional forum in predictive, preventive and   rubber latex  foam reinforced with micro- and nanofibrillated
                 personalised medicine for multi-professional consideration and   cellulose via dunlop method[J]. Polymers, 2020, 12(9): E1959.
                 consolidation[J]. EPMA Journal, 2019, 8(1): 1-54.     [21]  SAI H Z, JIN Z  Q, WANG  Y T,  et al. Facile  and green route to
            [3]   HUANG Y, ZHENG M B, LIN Z  X,  et al. Flexible cathodes and   fabricate bacterial cellulose membrane with superwettability for
                 multifunctional interlayers based on carbonized bacterial cellulose   oil-water separation[J]. Advanced Sustainable Systems, 2020, 4(7):
                 for high performance lithium-sulfur batteries[J]. Journal of Materials   2000042.
                 Chemistry, 2015, 3(20): 10910-10918.          [22]  HAMEDI S, SHOJIAOSADATI S  A, NAJAFI  V,  et al. A novel
            [4]   WAHID F, HU X H, CHU  L Q,  et al. Development of bacterial   double-network antibacterial hydrogel based on aminated bacterial
                 cellulose/chitosan based semi-interpenetrating hydrogels with   cellulose and schizophyllan[J]. Carbohydrate Polymers, 2020, 229:
                 improved mechanical and antibacterial properties[J]. International   115383.
                 Journal of Biological Macromolecules, 2019, 122: 380-387.     [23]  LOTFIMAN S, BIAK D R A, TI T B, et al. Influence of date syrup
            [5]   KHAN H, KADAM A, DUTT D. Studies on  bacterial cellulose   as a carbon source on bacterial cellulose production by Acetobacter
                 produced by a novel strain of lactobacillus  genus[J]. Carbohydrate   xylinum  0416[J]. Advances in  Polymer Technology, 2018, 37(4):
                 Polymers, 2020, 229: 115513.                      1085-1091.
            [6]   REVIN V V, LIYAS’KINA E V, SAPUNOV N B, et al. Isolation and   [24]  LI Z, WANG L F, HUA J C,  et al.  Production of nano  bacterial
                 characterization of  the  strains producing bacterial  cellulose[J].   cellulose from waste water of candied jujube-processing industry
                 Microbiology, 2020, 89(1): 86-95.                 using  Acetobacter xylinum[J]. Carbohydrate Polymers, 2015, 120:
            [7]   GERMA F, PARTE B, SHELLA P S, et al. Current progress on the   115-119.
                 production modification and applications of bacterial cellulose[J].   [25]  SAI H Z, ZHANG J, JIN Z Q,  et al. Robust silica-cellulose
                 Critical Reviews in Biotechnology, 2020, 40(3): 397-414.     composite aerogels with a nanoscale interpenetrating network
            [8]   LEE K Y, BULDDUM G, MANTALARIS A, et al. More than meets   structure prepared using a streamlined process[J]. Polymers, 2020,
                 the eye in bacterial cellulose: Biosynthesis, bioprocessing and   12(4): 807.
                 applications in advanced fiber composites[J]. Macromolecular   [26]  SUN B J, ZHANG L, WEI F, et al. In situ structural modification of
                 Bioscience, 2014, 14(1): 10-32.                   bacterial cellulose by sodium fluoride[J]. Carbohydrate Polymers,
            [9]   DONG H H, CHOI W S, KIM T Y, et al. Enhanced production of   2020, 231: 115765.
                 bacterial cellulose in  Komagataeibacter xylinus  via tuning  of   [27]  KNOLLER A,  WIDENMEYER M,  BILL J,  et al. Fast-growing
                 biosynthesis genes with synthetic RBS[J]. Journal of Microbiology   bacterial cellulose with outstanding mechanical properties  via
                 and Biotechnology, 2020, 30(9): 1430-1435.        cross-linking by multivalent ions[J]. Materials, 2020, 13(12): E2838.
            [10]  FLOREA  M, HAGEMANN  H, SANTOSA G,  et al. Engineering   [28]  YU K, AUBINTAM M E.  Bacterially grown cellulose/graphene
                 control of bacterial cellulose production using a genetic toolkit and a   oxide composites infused with  γ-poly(glutamic acid) as
                 new cellulose-producing strain[J]. Proceedings of the National   biodegradable structural materials with enhanced toughness[J]. ACS
                 Academy of Sciences of the United States of America, 2016,   Applied Nano Materials, 2020, 3(12): 12055-12063.
                 113(24): E3431-E3440.                         [29]  YU K, BALASUBRAMANIAN S, PAHLAVANI H,  et al. Spiral
            [11]  KUO  C  H,  TENG H Y, LEE C K. Knock-out of glucose   honeycomb microstructured bacterial cellulose for increased strength
                 dehydrogenase gene in  Gluconacetobacter xylinus for bacterial   and toughness[J]. ACS Applied Materials & Interfaces, 2020, 12(45):
                 cellulose production enhancement[J]. Biotechnology and Bioprocess   50748-50755.
                 Engineering, 2015, 20(1): 18-25.              [30]  GUAN Q F, ZIMENGA H, ZHU Y B,  et al. Bio-inspired
            [12]  QUAN V M, LI B, SUKYAI P. Bacterial cellulose modification using   lotus-fiber-like spiral hydrogel bacterial cellulose fibers[J]. Nano
                 static magnetic field[J]. Cellulose, 2020, 27(10): 5581-5596.     Letters, 2021, 21(2): 952-958.
            [13]  YIN N, CHEN S, LI Z, et al. Porous bacterial cellulose prepared by a   [31]  LIANG Q Q, ZHANG D, JI P, et al. High-strength superstretchable
                 facile surfactant-assisted foaming method in azodicarbonamide-   helical bacterial  cellulose fibers with a "self-fiber-reinforced
                 NaOH aqueous solution[J]. Materials Letters, 2012, 81: 131-134.     structure"[J]. ACS Applied Materials & Interfaces, 2020, 13(1):
            [14]  YIN N, STILWELL M  D, SANTOS T M,  et al. Agarose   1545- 1554.
                 particle-templated porous bacterial cellulose and its application in   [32]  SHIM E, KIM H R. Coloration of bacterial cellulose using in situ and
                 cartilage growth  in vitro[J]. Acta  Biomaterialia, 2015, 12(1):   ex situ methods[J]. Textile Research  Journal, 2019, 89(7): 1297-
                 129-138.                                          1310.
            [15]  ZHANG  H, XU  X R, CHEN C T,  et al.  In situ controllable   [33]  MALES L, FAKIN D, BRACIC M,  et al. Efficiency of differently
                 fabrication of porous bacterial cellulose[J]. Materials Letters, 2019,   processed membranes based on cellulose as cationic dye
                 249: 104-107.                                     adsorbents[J]. Nanomaterials, 2020, 10(4): 0642.
            [16]  KHAMKEAW A,  ASAVMONGKOLKUL T, PERNGYAI T,  et al.   [34]  ARITONANG H  F, KAMEA  O E, KOLEANGAN  H,  et al.
                 Interconnected micro, meso, and macro porous activated carbon from   Biotemplated synthesis of  Ag-ZnO nanoparticles/bacterial cellulose
                 bacterial nanocellulose for superior adsorption properties and   nanocomposites for photocatalysis application[J]. Polymer-Plastics
                 effective catalytic performance[J]. Molecules, 2020, 25(18): E4063.     Technology and Materials, 2020, 59(12): 1292-1299.
            [17]  BAI Q H, SHEN Y H, ASOH T A, et al. Controlled preparation of   [35]  HU J Y, WU D S, FENG Q, et al. Soft high-loading TiO 2 composite
                 interconnected 3D hierarchical porous carbons from bacterial   biomaterial film as an efficient and recyclable catalyst for removing
                 cellulose-based composite monoliths for supercapacitors[J].   methylene blue[J]. Fibers and Polymers, 2020, 21(8): 1760-1766.
                 Nanoscale, 2020, 12(28): 15261-15274.         [36]  ŻYWICKA A, FIJAKOWSKI K, JUNKA A F, et al. Modification of
            [18]  GALDINO C J S, MAIA A D, MEIRA H M, et al. Use of a bacterial   bacterial cellulose with quaternary ammonium compounds based on
                 cellulose filter for  the removal of oil from wastewater[J]. Process   fatty acids and amino acids and the effect on antimicrobial
                 Biochemistry, 2020, 91: 288-296.                  activity[J]. Biomacromolecules, 2018, 19(5): 1528-1538.
            [19]  DOMSKIENE J, SEDERAVICIUTE F, SIMONAITYTE J.   [37]  YANG M N,  WARD J, CHOY K  L.  Nature-inspired bacterial
                 Kombucha bacterial cellulose for sustainable fashion[J]. International   cellulose/methylglyoxal (BC/MGO) nanocomposite for broad-
   16   17   18   19   20   21   22   23   24   25   26