Page 22 - 《精细化工》2021年第12期
P. 22

·2384·                            精细化工   FINE CHEMICALS                                 第 38 卷

                 spectrum antimicrobial wound dressing[J]. Macromolecular   high-performance  electromagnetic interference shielding[J]. ACS
                 Bioscience, 2020, 20(8): 2000070.                 Nano, 2021, 15(5): 8439-8449.
            [38]  CABANASROMERO L V, VALLS C, VALENZUELA S V,  et al.   [52]  CHEN T Q (陈太球), WANG B L (王炳来), WU Y (巫瑛), et al. A
                 Bacterial cellulose-chitosan paper with antimicrobial and antioxidant   preparation method of antistatic fiber, fabric and antistatic fiber:
                 activities[J]. Biomacromolecules, 2020, 21(4): 1568-1577.     CN109913975A[P]. 2019-06-21.
            [39]  ANASTASIA W  I, VITA T  R, WURI  A,  et al.  Antioxidant and   [53]  CAI M M, SHAFI S, ZHAO Y P. Preparation of compressible silica
                 antibacterial properties of bacterial cellulose indonesian plant extract   aerogel reinforced by bacterial cellulose using tetraethylorthosilicate
                 composites for mask sheet[J]. Journal of Applied Pharmaceutical   and methyltrimethoxylsilane co-precursor[J]. Journal of Non-
                 Science, 2020, 10(7): 37-42.                      Crystalline Solids, 2018, 481: 622-626.
            [40]  DARPENTIGNY  C, MARCOUX P  R, MENNETEAU M,  et al.   [54]  KONO  H Y, UNO T, HARUTO T,  et al. Nanofibrillated bacterial
                 Antimicrobial cellulose nanofibril porous materials obtained  by   cellulose surface  modified with  methyltrimethoxysilane for
                 supercritical impregnation of thymol[J]. ACS Applied Bio Materials,   fiber-reinforced composites[J]. ACS Applied Nano Materials, 2020,
                 2020, 3(5): 2965-2975.                            3(8): 8232-8241.
            [41]  HE X L,  YANG Y Q, SONG H,  et al. Polyanionic  composite   [55]  KRISHNAMURTHY M, LOBO N P, SAMANTA  D.  Improved
                 membranes based on bacterial cellulose  and  amino  acid  for   hydrophobicity of a bacterial  cellulose surface: Click chemistry in
                 antimicrobial application[J]. ACS Applied Materials &  Interfaces,   action[J]. ACS Biomaterials Science &  Engineering, 2020, 6(2):
                 2020, 12(13): 14784-14796.                        879-888.
            [42]  ROL F, BELGACEM M N, GANDINI A, et al. Recent advances in   [56]  KANNO T, UYAMA H. Unique ivy-like morphology composed of
                 surface-modified cellulose nanofibrils[J]. Progress in Polymer   poly(lactic acid) and bacterial cellulose cryogel[J]. ACS Omega,
                 Science, 2019, 88: 241-264.                       2018, 3(1): 631-635.
            [43]  WU C N, FUH S C, LIN S P. TEMPO-oxidized bacterial cellulose   [57]  ZHANG B  X,  ZHANG  Y B, LI J  Y,  et al. Tough  macroporous
                 pellicle with silver nanoparticles for wound dressing[J].   phenolic resin/bacterial cellulose composite with  double-network
                 Biomacromolecules, 2018, 19(2): 544-554.          structure fabricated by ambient pressure drying[J]. Cellulose, 2020,
            [44]  KHAMRAI M, BANERJEE S L, PAUL S, et al. Dopamine modified   27(9): 5029-5039.
                 bacterial cellulose/rGO/AgNPs based mussel  mimetic bio-adhesive   [58]  JAKMUANGPAK S, PRADA T, MONGKOLTHANARUK W, et al.
                 antimicrobial patch: A green approach towards wound healing   Engineering bacterial cellulose films by nanocomposite approach and
                 application[J]. ACS Sustainable Chemistry &  Engineering, 2019,   surface  modification for biocompatible triboelectric nanogenerator[J].
                 7(14): 12083-12097.                               ACS Applied Electronic Materials, 2020, 2(8): 2498-2506.
            [45]  YUAN H  B,  CHEN L, HONG F F.  A biodegradable antibacterial   [59]  WANG C, WANG S, CHEN G,  et al. Flexible  bio-compatible
                 nanocomposite based on oxidized bacterial nanocellulose for rapid   nanofluidic ion conductor[J]. Chemistry of Materials, 2018, 30(21):
                 hemostasis and wound healing[J]. ACS Applied Materials &   7707-7713.
                 Interfaces, 2020, 12(3): 3382- 3392.          [60]  WU X, ZHANG  M, SONG T,  et al. Highly durable and flexible
            [46]  DARPENTIGNY  C, SILLARD C, MENNETEAU  M,  et al.   paper electrode with a dual fiber matrix structure for high-
                 Antibacterial cellulose nanopapers  via  aminosilane grafting in   performance supercapacitors[J]. ACS Applied Materials & Interfaces,
                 supercritical carbon dioxide[J]. ACS  Applied Bio Materials, 2020,   2020, 12(11): 13096-13106.
                 3(12): 8402-8413.                             [61]  ROH S H, PALANISAMY G,  SADHASIVAM  T,  et al.
            [47]  WASIM M,  KHAN M R, MUHAMMAD  M,  et al.  Surface   Techno-economical feasibility of biocellulose membrane along with
                 modification of bacterial cellulose by copper and zinc oxide sputter   polyethylene film as a separator for lead-acid batteries[J]. ACS
                 coating for UV-resistance/antistatic/antibacterial characteristics[J].   Sustainable Chemistry & Engineering, 2019, 7(9): 8789-8797.
                 Coatings, 2020, 10(4): 0364.                  [62]  TAN H J, XIAO D, NAVIK R,  et al. Facile fabrication of
            [48]  PATRICIA C, MANUEL V, GONZALO V.  Composite films with   polyaniline/pristine graphene-bacterial cellulose composites as
                 UV-barrier properties based on  bacterial cellulose combined with   high-performance electrodes for constructing flexible all-solid-state
                 chitosan and polyvinyl alcohol: Study of puncture and water interaction   supercapacitors[J]. ACS Omega, 2021, 6(17): 11427-11435.
                 properties[J]. Biomacromolecules, 2019, 20(5): 2084- 2095.     [63]  LI Z, WANG  Y,  XIA W,  et al. Nitrogen  phosphorus and sulfur
            [49]  PATRICIA C, MANUEL V, GONZALO V.  Composite films with   co-doped  pyrolyzed  bacterial  cellulose  nanofibers  for
                 UV-barrier properties of bacterial cellulose with glycerol and   supercapacitors[J]. Nanomaterials, 2020, 10(10): 1912.
                 polyvinyl alcohol: Puncture  properties solubility and swelling   [64]  ZHANG T Y, WANG F J, YANG L, et al. Constructing consistent
                 degree[J]. Biomacromolecules, 2019, 20(8): 3115-3125.     pore microstructures of bacterial cellulose-derived cathode and anode
            [50]  LI L N (李利娜), SUN  R J (孙润军), LI  Q X (李琪娴),  et al.   materials for  high energy density sodium-ion capacitors[J]. New
                 Preparation and performance test of composite radiation protection   Journal of Chemistry, 2020, 44(5): 1865-1871.
                 fabric[J]. Journal of Textile Science and Engineering (纺织科学与工  [65]  RAHUL K M, SATU M  R, AMO J P,  et al. Engineering and
                 程杂志), 2020, 37(1): 23-30.                         characterization of bacterial nanocellulose films as low cost and
            [51]  WAN Y Z, XIONG P X, LIU J Z, et al. Ultrathin, strong, and highly   flexible sensor material[J]. ACS Applied Materials & Interfaces,
                 flexible Ti 3C 2T x MXene/bacterial  cellulose composite films for   2017, 9(22): 19048-19058.
   17   18   19   20   21   22   23   24   25   26   27