Page 22 - 《精细化工》2021年第12期
P. 22
·2384· 精细化工 FINE CHEMICALS 第 38 卷
spectrum antimicrobial wound dressing[J]. Macromolecular high-performance electromagnetic interference shielding[J]. ACS
Bioscience, 2020, 20(8): 2000070. Nano, 2021, 15(5): 8439-8449.
[38] CABANASROMERO L V, VALLS C, VALENZUELA S V, et al. [52] CHEN T Q (陈太球), WANG B L (王炳来), WU Y (巫瑛), et al. A
Bacterial cellulose-chitosan paper with antimicrobial and antioxidant preparation method of antistatic fiber, fabric and antistatic fiber:
activities[J]. Biomacromolecules, 2020, 21(4): 1568-1577. CN109913975A[P]. 2019-06-21.
[39] ANASTASIA W I, VITA T R, WURI A, et al. Antioxidant and [53] CAI M M, SHAFI S, ZHAO Y P. Preparation of compressible silica
antibacterial properties of bacterial cellulose indonesian plant extract aerogel reinforced by bacterial cellulose using tetraethylorthosilicate
composites for mask sheet[J]. Journal of Applied Pharmaceutical and methyltrimethoxylsilane co-precursor[J]. Journal of Non-
Science, 2020, 10(7): 37-42. Crystalline Solids, 2018, 481: 622-626.
[40] DARPENTIGNY C, MARCOUX P R, MENNETEAU M, et al. [54] KONO H Y, UNO T, HARUTO T, et al. Nanofibrillated bacterial
Antimicrobial cellulose nanofibril porous materials obtained by cellulose surface modified with methyltrimethoxysilane for
supercritical impregnation of thymol[J]. ACS Applied Bio Materials, fiber-reinforced composites[J]. ACS Applied Nano Materials, 2020,
2020, 3(5): 2965-2975. 3(8): 8232-8241.
[41] HE X L, YANG Y Q, SONG H, et al. Polyanionic composite [55] KRISHNAMURTHY M, LOBO N P, SAMANTA D. Improved
membranes based on bacterial cellulose and amino acid for hydrophobicity of a bacterial cellulose surface: Click chemistry in
antimicrobial application[J]. ACS Applied Materials & Interfaces, action[J]. ACS Biomaterials Science & Engineering, 2020, 6(2):
2020, 12(13): 14784-14796. 879-888.
[42] ROL F, BELGACEM M N, GANDINI A, et al. Recent advances in [56] KANNO T, UYAMA H. Unique ivy-like morphology composed of
surface-modified cellulose nanofibrils[J]. Progress in Polymer poly(lactic acid) and bacterial cellulose cryogel[J]. ACS Omega,
Science, 2019, 88: 241-264. 2018, 3(1): 631-635.
[43] WU C N, FUH S C, LIN S P. TEMPO-oxidized bacterial cellulose [57] ZHANG B X, ZHANG Y B, LI J Y, et al. Tough macroporous
pellicle with silver nanoparticles for wound dressing[J]. phenolic resin/bacterial cellulose composite with double-network
Biomacromolecules, 2018, 19(2): 544-554. structure fabricated by ambient pressure drying[J]. Cellulose, 2020,
[44] KHAMRAI M, BANERJEE S L, PAUL S, et al. Dopamine modified 27(9): 5029-5039.
bacterial cellulose/rGO/AgNPs based mussel mimetic bio-adhesive [58] JAKMUANGPAK S, PRADA T, MONGKOLTHANARUK W, et al.
antimicrobial patch: A green approach towards wound healing Engineering bacterial cellulose films by nanocomposite approach and
application[J]. ACS Sustainable Chemistry & Engineering, 2019, surface modification for biocompatible triboelectric nanogenerator[J].
7(14): 12083-12097. ACS Applied Electronic Materials, 2020, 2(8): 2498-2506.
[45] YUAN H B, CHEN L, HONG F F. A biodegradable antibacterial [59] WANG C, WANG S, CHEN G, et al. Flexible bio-compatible
nanocomposite based on oxidized bacterial nanocellulose for rapid nanofluidic ion conductor[J]. Chemistry of Materials, 2018, 30(21):
hemostasis and wound healing[J]. ACS Applied Materials & 7707-7713.
Interfaces, 2020, 12(3): 3382- 3392. [60] WU X, ZHANG M, SONG T, et al. Highly durable and flexible
[46] DARPENTIGNY C, SILLARD C, MENNETEAU M, et al. paper electrode with a dual fiber matrix structure for high-
Antibacterial cellulose nanopapers via aminosilane grafting in performance supercapacitors[J]. ACS Applied Materials & Interfaces,
supercritical carbon dioxide[J]. ACS Applied Bio Materials, 2020, 2020, 12(11): 13096-13106.
3(12): 8402-8413. [61] ROH S H, PALANISAMY G, SADHASIVAM T, et al.
[47] WASIM M, KHAN M R, MUHAMMAD M, et al. Surface Techno-economical feasibility of biocellulose membrane along with
modification of bacterial cellulose by copper and zinc oxide sputter polyethylene film as a separator for lead-acid batteries[J]. ACS
coating for UV-resistance/antistatic/antibacterial characteristics[J]. Sustainable Chemistry & Engineering, 2019, 7(9): 8789-8797.
Coatings, 2020, 10(4): 0364. [62] TAN H J, XIAO D, NAVIK R, et al. Facile fabrication of
[48] PATRICIA C, MANUEL V, GONZALO V. Composite films with polyaniline/pristine graphene-bacterial cellulose composites as
UV-barrier properties based on bacterial cellulose combined with high-performance electrodes for constructing flexible all-solid-state
chitosan and polyvinyl alcohol: Study of puncture and water interaction supercapacitors[J]. ACS Omega, 2021, 6(17): 11427-11435.
properties[J]. Biomacromolecules, 2019, 20(5): 2084- 2095. [63] LI Z, WANG Y, XIA W, et al. Nitrogen phosphorus and sulfur
[49] PATRICIA C, MANUEL V, GONZALO V. Composite films with co-doped pyrolyzed bacterial cellulose nanofibers for
UV-barrier properties of bacterial cellulose with glycerol and supercapacitors[J]. Nanomaterials, 2020, 10(10): 1912.
polyvinyl alcohol: Puncture properties solubility and swelling [64] ZHANG T Y, WANG F J, YANG L, et al. Constructing consistent
degree[J]. Biomacromolecules, 2019, 20(8): 3115-3125. pore microstructures of bacterial cellulose-derived cathode and anode
[50] LI L N (李利娜), SUN R J (孙润军), LI Q X (李琪娴), et al. materials for high energy density sodium-ion capacitors[J]. New
Preparation and performance test of composite radiation protection Journal of Chemistry, 2020, 44(5): 1865-1871.
fabric[J]. Journal of Textile Science and Engineering (纺织科学与工 [65] RAHUL K M, SATU M R, AMO J P, et al. Engineering and
程杂志), 2020, 37(1): 23-30. characterization of bacterial nanocellulose films as low cost and
[51] WAN Y Z, XIONG P X, LIU J Z, et al. Ultrathin, strong, and highly flexible sensor material[J]. ACS Applied Materials & Interfaces,
flexible Ti 3C 2T x MXene/bacterial cellulose composite films for 2017, 9(22): 19048-19058.