Page 120 - 《精细化工》2020年第2期
P. 120
·322· 精细化工 FINE CHEMICALS 第 38 卷
purification of fluorescent single-walled carbon nanotube fragments[J]. an effective turn-off fluorescence sensing, multi-colour cell imaging
Journal of the American Chemical Society, 2004, 126(40): 12736- and fluorescent ink[J]. Colloids and Surfaces B: Biointerfaces, 2018,
12737. 169: 321-328.
[10] YAN H C, NI H Y H , YANG Y W, et al. Smart nanoprobe based on [20] BAO R Q, CHEN Z Y, SUN X, et al. Green and facile synthesis of
two-photon sensitized terbium-carbon dots for dual-mode fluorescence nitrogen and phosphorus Co-doped carbon quantum dots towards
thermometer and antibacterial[J]. Chinese Chemical Letters, 2019, fluorescent ink and sensing applications[J]. Nanomaterials, 2018, 8:
31(7): 1792-1796. 386.
[11] ZHANG R Z (张睿哲), LI K K (李可可), ZHANG K B (张凯博), et al. [21] GUO L L, LI L, LIU M Y, et al. Bottom-up preparation of nitrogen
Coal-based carbon quantum dots/carbon nitride composites for doped carbon quantum dots with green emission under microwave-
photocatalytic CO 2 reduction[J]. CIESC Journal (化工学报), 2020, assisted hydrothermal treatment and their biological imaging[J].
71(6): 2788-2794. Materials Science & Engineering C, 2018, 84: 60-66.
[12] WU W B (武文波), ZHANG Y C (张越诚), LI C J (李承佳), et al. [22] DING L (丁玲), JIN L (金玲), LIU M L (刘茂兰), et al. Study of
Determination of L-ascorbic acid by carbon quantum dot/eosin Y hydrothermal preparation and optical properties of fluorescent carbon
ratiometric fluorescence probe[J]. Chinese Journal of Luminescence quantum dots[J]. Shandong Chemical Industry (山东化工), 2015,
(发光学报), 2020, 41(3): 331-338. 44(12): 3-6.
[13] RAVI K Y, KALIM D, KUMAR S K , et al. Graphene quantum dot [23] BUK V, PEMBLE M, TWOMEY K. Fabrication and evaluation of a
based materials for sensing, bio-imaging and energy storage applications: carbon quantum dot/gold nanoparticle nanohybrid material integrated
A review[J]. RSC Advances, 2020, 10(40): 23861-23989. onto planar micro gold electrodes for potential bioelectrochemical
[14] XIN X, YANG H Y, XIAO Y H, et al. Enhancement of sensing applications[J]. Electrochimica Acta, 2019, 293: 307-317.
photoelectrochemical activity of Fe 2O 3 nanowires decorated with [24] HU Y P, YANG J, JIA L, et al. Ethanol in aqueous hydrogen peroxide
carbon quantum dots[J]. International Journal of Hydrogen Energy, solution: Hydrothermal synthesis of highly photoluminescent carbon
2018, 43(14): 6954-6962. dots as multifunctional nanosensors[J]. Carbon, 2015, 93: 999-1007.
[15] YANG P, ZHU Z Q, CHEN M Z, et al. Microwave-assisted synthesis [25] CHENG A H (程爱华), FENG L F (冯利凡), CHANG F (畅飞), et al.
of xylan-derived carbon quantum dots for tetracycline sensing[J]. Characterization of lead ions imprinting chitosan chelating
Optical Materials, 2018, 85: 329-336. adsorbents[J]. Chinese Journal of Environmental Engineering (环境
[16] AZIZI B, FARHADI K, SAMADI N. Functionalized carbon dots 工程学报), 2015, 9(8): 3597-3601.
from zein biopolymer as a sensitive and selective fluorescent probe [26] WANG J (王佳), NIU L Y (牛棱渊), HONG W (洪伟), et al.
for determination of sumatriptan[J]. Microchemcal Journal, 2019, Preparation and catalytic applications of sulfonated amorphous carbon
146: 965-973. materials as highly active solid acid catalyst[J]. Fine Chemicals (精
[17] RANI U A, NG L Y, NG C Y, et al. A Review of carbon quantum 细化工), 2012, 29(3): 266-271, 275.
dots and their applications in wastewater treatment[J]. Advances in [27] ATCHUDAN R, EDISONA T N J I, PERUMALB S, et al. Concurrent
Colloid and Interface Science, 2020, 278: 102124. synthesis of nitrogen-doped carbon dots for cell imaging and ZnO@
[18] WANG Q (王庆), CHEN Y F (陈宇飞), LI P (李萍), et al. Research nitrogen-doped carbon sheets for photocatalytic degradation of
advances in the synthesis and applications of graphitic carbon nitride methylene blue[J]. Colloids and Surfaces B: Biointerfaces, 2018,
quantum dots [J]. Chemistry Bulletin (化学通报), 2020, 83(3): 350: 75-85.
218-225, 264. [28] DATTA K K R, QI G, ZCORIL R, et al. Yellow emitting carbon dots
[19] ATCHUDAN R, EDISONA T N J I, ASEER K R, et al. Hydrothermal with superior colloidal, thermal, and photochemical stabilities[J].
conversion of magnolia liliiflora into nitrogen-doped carbon dots as Journal of Materials Chemistry C, 2019, 4: 9798.
(上接第 309 页) [11] ZHANG X Y, ZHONG X X, XU W, et al. Preparation and
electrochemical properties of Li 4Ti 5O 12/Ti 4O 7 composite for
[2] LIU J, WEI A X, PAN G X, et al. Self-supported hierarchical porous lithium-ion batteries[J]. Ionics, 2018, 24(2): 379-384.
Li 4Ti 5O 12/carbon arrays for boosted lithium ion storage[J]. Journal of [12] IUCHI H, HORIKAWA T, SOTOWA K I. Synthesis and
Energy Chemistry, 2020, 54: 754-760. electrochemical performance of a nano crystalline Li 4Ti 5O 12/C
[3] HUANG X K, REN R, SINGH N K, et al. Enhancing cyclic composite for lithium-ion batteries prepared using resorcinol-
performance and rate capability of Li 4Ti 5O 12 for lithium-ion batteries formaldehyde resins[J]. Electrochimica Acta, 2019, 295: 540-549.
through thin carbon coating[J]. ChemistrySelect, 2018, 3(38): 10792- [13] LIU K, CUI J L, YIN J P, et al. Ultra-long life core-shell structure
10798. Li 4Ti 5O 12/C nanocomposite anode materials for lithium ion
[4] XU G X, HAN P X, DONG S M, et al. Li 4Ti 5O 12-based energy batteries[J]. Journal of Alloys and Compounds, 2018, 765: 229-235.
conversion and storage systems: Status and prospects[J]. Coordination [14] JUNG H G, KIM G H, SCROSATI B, et al. Micron-sized, carbon-
Chemistry Reviews, 2017, 343: 139-184. coated Li 4Ti 5O 12 as high power anode material for advanced lithium
[5] DHAIVEEGAN P, PENG H T, MICHALSKA M, et al. Investigation batteries[J]. Journal of Power Sources, 2011, 196(18): 7763-7766.
of carbon coating approach on electrochemical performance of [15] LUO G E, HE J R, SONG X J, et al. Bamboo carbon assisted sol-gel
Li 4Ti 5O 12/C composite anodes for high-rate lithium-ion batteries[J]. synthesis of Li 4Ti 5O 12 anode material with enhanced electrochemical
Journal of Solid State Electrochemistry, 2018, 22(6): 1851-1861. activity for lithium ion battery[J]. Journal of Alloys & Compounds,
[6] LI D L, ZHANG X X, MIAO X F, et al. Solid-state synthesized 2015, 621: 268-273.
Li 4Ti 5O 12 for ultrafast lithium ion storage enabled by carbon-coating [16] TIAN S, GUAN D C, LU J, et al. Synthesis of the electrochemically
induced particle size tailoring[J]. Journal of Alloys and Compounds, stable sulfur-doped bamboo charcoal as the anode material of
2019, 797: 1258-1267. potassium-ion batteries[J]. Journal of Power Sources, 2020, 448:
[7] ERDAS A, OZCAN S, NALCI D, et al. Novel Ag/Li 4Ti 5O 12 binary 227572.
composite anode electrodes for high capacity Li-ion batteries[J]. [17] JIANG S X, CHEN M F, WANG X Y, et al. Honeycomb-like
Surface & Coatings Technology, 2015, 271: 136-140. nitrogen and sulfur dual-doped hierarchical porous biomass carbon
[8] TOJO T, KAWASHIRI S, TSUDA T, et al. Electrochemical bifunctional interlayer for advanced lithium-sulfur batteries[J].
performance of single Li 4Ti 5O 12 particle for lithium ion battery Chemical Engineering Journal, 2019, 355: 478-486.
anode[J]. Journal of Electroanalytical Chemistry, 2019, 836: 24-29. [18] LI Y Y, WANG L, GAO B, et al. Hierarchical porous carbon
[9] XIAO C W, DING Y, ZHANG J T, et al. Li 4–xNa xTi 5O 12 with low materials derived from self-template bamboo leaves for lithium-
operation potential as anode for lithium ion batteries[J]. Journal of sulfur batteries[J]. Eletrochimica Acta, 2017, 229: 352-360.
Power Sources, 2014, 28: 323-329. [19] SHI N N (史楠楠), JIANG X (姜雪), ZHANG Y (张莹), et al.
[10] QIU C X (邱彩霞). Preparation of Li 4Ti 5O 12/C anode materials by Preparation and performance of N-doped carbon coated Li 4Ti 5O 12 as
sol-gel method and electrochemical properties[J]. Chinese Journal anode material for lithium-ion batteries[J]. Chemical Journal of
Power Sources (电源技术), 2017, 41(3): 353-356. Chinese Universities (高等学校化学学报), 2015, 36(5): 981-988.