Page 120 - 《精细化工》2020年第2期
P. 120

·322·                             精细化工   FINE CHEMICALS                                 第 38 卷

                 purification of fluorescent single-walled carbon nanotube fragments[J].   an effective turn-off fluorescence sensing, multi-colour cell imaging
                 Journal of the American Chemical Society, 2004, 126(40): 12736-   and fluorescent ink[J]. Colloids and Surfaces B: Biointerfaces, 2018,
                 12737.                                            169: 321-328.
            [10]  YAN H C, NI H Y H , YANG Y W, et al. Smart nanoprobe based on   [20]  BAO R Q, CHEN Z Y, SUN X, et al. Green and facile synthesis of
                 two-photon sensitized terbium-carbon dots for dual-mode fluorescence   nitrogen and phosphorus Co-doped carbon quantum dots towards
                 thermometer and antibacterial[J]. Chinese Chemical Letters, 2019,   fluorescent ink and sensing applications[J]. Nanomaterials, 2018, 8:
                 31(7): 1792-1796.                                 386.
            [11]  ZHANG R Z (张睿哲), LI K K (李可可), ZHANG K B (张凯博), et al.   [21]  GUO L L, LI L, LIU M Y, et al. Bottom-up preparation of nitrogen
                 Coal-based carbon quantum dots/carbon nitride composites for   doped carbon quantum dots with green emission under microwave-
                 photocatalytic CO 2 reduction[J]. CIESC Journal (化工学报), 2020,   assisted  hydrothermal treatment and their  biological imaging[J].
                 71(6): 2788-2794.                                 Materials Science & Engineering C, 2018, 84: 60-66.
            [12]  WU W B (武文波), ZHANG Y C (张越诚), LI C J (李承佳), et al.   [22] DING L (丁玲), JIN L (金玲), LIU M L (刘茂兰), et al. Study of
                 Determination of L-ascorbic acid by carbon quantum dot/eosin Y   hydrothermal preparation and optical properties of fluorescent carbon
                 ratiometric fluorescence probe[J]. Chinese Journal of Luminescence   quantum dots[J]. Shandong Chemical Industry (山东化工), 2015,
                 (发光学报), 2020, 41(3): 331-338.                     44(12): 3-6.
            [13]  RAVI K Y, KALIM D, KUMAR S K , et al. Graphene quantum dot   [23]  BUK V, PEMBLE M, TWOMEY K. Fabrication and evaluation of a
                 based materials for sensing, bio-imaging and energy storage applications:   carbon quantum dot/gold nanoparticle nanohybrid material integrated
                 A review[J]. RSC Advances, 2020, 10(40): 23861-23989.   onto planar micro gold electrodes for potential bioelectrochemical
            [14]  XIN X, YANG  H Y, XIAO Y  H, et al. Enhancement of   sensing applications[J]. Electrochimica Acta, 2019, 293: 307-317.
                 photoelectrochemical activity of Fe 2O 3 nanowires  decorated with   [24]  HU Y P, YANG J, JIA L, et al. Ethanol in aqueous hydrogen peroxide
                 carbon quantum dots[J]. International Journal of Hydrogen Energy,   solution: Hydrothermal synthesis of highly photoluminescent carbon
                 2018, 43(14): 6954-6962.                          dots as multifunctional nanosensors[J]. Carbon, 2015, 93: 999-1007.
            [15]  YANG P, ZHU Z Q, CHEN M Z, et al. Microwave-assisted synthesis   [25]  CHENG A H (程爱华), FENG L F (冯利凡), CHANG F (畅飞), et al.
                 of xylan-derived carbon quantum dots for tetracycline sensing[J].   Characterization of lead ions imprinting chitosan  chelating
                 Optical Materials, 2018, 85: 329-336.             adsorbents[J]. Chinese Journal of Environmental Engineering (环境
            [16]  AZIZI B, FARHADI K, SAMADI  N. Functionalized carbon dots   工程学报), 2015, 9(8): 3597-3601.
                 from zein biopolymer as a sensitive and selective fluorescent probe   [26]  WANG J (王佳), NIU  L Y  (牛棱渊), HONG  W (洪伟),  et al.
                 for  determination  of sumatriptan[J]. Microchemcal Journal, 2019,   Preparation and catalytic applications of sulfonated amorphous carbon
                 146: 965-973.                                     materials as highly active solid acid catalyst[J]. Fine Chemicals (精
            [17]  RANI U A, NG L Y, NG C Y, et al. A Review of carbon quantum   细化工), 2012, 29(3): 266-271, 275.
                 dots and their applications in wastewater treatment[J]. Advances in   [27]  ATCHUDAN R, EDISONA T N J I, PERUMALB S, et al. Concurrent
                 Colloid and Interface Science, 2020, 278: 102124.   synthesis of nitrogen-doped carbon dots for cell imaging and ZnO@
            [18] WANG Q (王庆), CHEN Y F (陈宇飞), LI P (李萍), et al. Research   nitrogen-doped carbon sheets for photocatalytic degradation of
                 advances in the synthesis and applications of graphitic carbon nitride   methylene blue[J]. Colloids and  Surfaces B:  Biointerfaces, 2018,
                 quantum dots [J]. Chemistry Bulletin (化学通报), 2020, 83(3):   350: 75-85.
                 218-225, 264.                                 [28]  DATTA K K R, QI G, ZCORIL R, et al. Yellow emitting carbon dots
            [19]  ATCHUDAN R, EDISONA T N J I, ASEER K R, et al. Hydrothermal   with superior colloidal, thermal, and  photochemical stabilities[J].
                 conversion of magnolia liliiflora into nitrogen-doped carbon dots as   Journal of Materials Chemistry C, 2019, 4: 9798.


            (上接第 309 页)                                        [11]  ZHANG  X  Y, ZHONG X  X, XU W,  et al. Preparation and
                                                                   electrochemical properties of Li 4Ti 5O 12/Ti 4O 7 composite for
            [2]   LIU J, WEI A X, PAN G X, et al. Self-supported hierarchical porous   lithium-ion batteries[J]. Ionics, 2018, 24(2): 379-384.
                 Li 4Ti 5O 12/carbon arrays for boosted lithium ion storage[J]. Journal of   [12]  IUCHI H, HORIKAWA  T, SOTOWA K I. Synthesis and
                 Energy Chemistry, 2020, 54: 754-760.              electrochemical performance of  a nano crystalline Li 4Ti 5O 12/C
            [3]   HUANG X K, REN R, SINGH N K,  et al. Enhancing cyclic   composite for  lithium-ion batteries prepared using  resorcinol-
                 performance and rate capability of Li 4Ti 5O 12 for lithium-ion batteries   formaldehyde resins[J]. Electrochimica Acta, 2019, 295: 540-549.
                 through thin carbon coating[J]. ChemistrySelect, 2018, 3(38): 10792-   [13]  LIU K, CUI J L, YIN J P, et al. Ultra-long life core-shell structure
                 10798.                                            Li 4Ti 5O 12/C nanocomposite anode materials for lithium ion
            [4]   XU G X, HAN P  X, DONG S M,  et al. Li 4Ti 5O 12-based energy   batteries[J]. Journal of Alloys and Compounds, 2018, 765: 229-235.
                 conversion and storage systems: Status and prospects[J]. Coordination   [14]  JUNG H G, KIM G H, SCROSATI B, et al. Micron-sized, carbon-
                 Chemistry Reviews, 2017, 343: 139-184.            coated Li 4Ti 5O 12 as high power anode material for advanced lithium
            [5]   DHAIVEEGAN P, PENG H T, MICHALSKA M, et al. Investigation   batteries[J]. Journal of Power Sources, 2011, 196(18): 7763-7766.
                 of carbon coating approach on electrochemical performance of   [15]  LUO G E, HE J R, SONG X J, et al. Bamboo carbon assisted sol-gel
                 Li 4Ti 5O 12/C composite anodes for high-rate lithium-ion batteries[J].   synthesis of Li 4Ti 5O 12 anode material with enhanced electrochemical
                 Journal of Solid State Electrochemistry, 2018, 22(6): 1851-1861.     activity for lithium ion battery[J]. Journal of Alloys & Compounds,
            [6]   LI D L, ZHANG  X X, MIAO  X F,  et al. Solid-state synthesized   2015, 621: 268-273.
                 Li 4Ti 5O 12 for ultrafast lithium ion storage enabled by carbon-coating   [16]  TIAN S, GUAN D C, LU J, et al. Synthesis of the electrochemically
                 induced particle size tailoring[J]. Journal of Alloys and Compounds,   stable sulfur-doped bamboo charcoal as the anode  material of
                 2019, 797: 1258-1267.                             potassium-ion batteries[J]. Journal of  Power Sources, 2020, 448:
            [7]   ERDAS A, OZCAN S, NALCI D, et al. Novel Ag/Li 4Ti 5O 12 binary   227572.
                 composite anode electrodes for high capacity  Li-ion batteries[J].   [17]  JIANG S X, CHEN M F,  WANG  X Y,  et al. Honeycomb-like
                 Surface & Coatings Technology, 2015, 271: 136-140.     nitrogen and sulfur dual-doped hierarchical porous biomass carbon
            [8]   TOJO T,  KAWASHIRI  S, TSUDA T,  et al. Electrochemical   bifunctional interlayer for advanced lithium-sulfur batteries[J].
                 performance of single Li 4Ti 5O 12  particle for lithium ion  battery   Chemical Engineering Journal, 2019, 355: 478-486.
                 anode[J]. Journal of Electroanalytical Chemistry, 2019, 836: 24-29.     [18]  LI Y Y, WANG  L, GAO B,  et al. Hierarchical porous carbon
            [9]   XIAO C W, DING  Y, ZHANG J T,  et al. Li 4–xNa xTi 5O 12  with low   materials derived from self-template  bamboo leaves for lithium-
                 operation potential as anode for lithium ion batteries[J]. Journal of   sulfur batteries[J]. Eletrochimica Acta, 2017, 229: 352-360.
                 Power Sources, 2014, 28: 323-329.             [19]  SHI N N (史楠楠), JIANG X (姜雪), ZHANG Y (张莹),  et al.
            [10]  QIU C X (邱彩霞). Preparation of Li 4Ti 5O 12/C anode materials by   Preparation and performance of N-doped carbon coated Li 4Ti 5O 12 as
                 sol-gel method and electrochemical properties[J]. Chinese Journal   anode material for lithium-ion batteries[J]. Chemical Journal of
                 Power Sources (电源技术), 2017, 41(3): 353-356.       Chinese Universities (高等学校化学学报), 2015, 36(5): 981-988.
   115   116   117   118   119   120   121   122   123   124   125