Page 45 - 《精细化工》2020年第2期
P. 45
第 2 期 吴晓珍,等: 碳纳米管改性聚氨酯的研究进展 ·247·
26(35): 7457-7470. nanocomposites[J]. Journal of Industrial and Engineering Chemistry,
[3] XIONG J W, ZHENG Z, QIN X M, et al. The thermal and 2015, 21: 11-25.
mechanical properties of a polyurethane/multi-walled carbon nanotube [22] WANG S H (王少辉), HOU C Y (侯彩英), MA G Z (马国章), et al.
composite[J]. Carbon, 2006, 44(13): 2701-2707. Organic alcohol modifieded multi-walled carbon nanotubes/waterborne
[4] PARK S H, OH K W, KIM S H. Reinforcement effect of cellulose polyurethane composites[J]. Thermosetting Resin (热固性树脂),
nanowhisker on bio-based polyurethane[J]. Composites Science and 2018, 33(6): 36-42.
Technology, 2013, 86: 82-88. [23] YAZDI M, HADDADI ASL V, POURMOHAMMADI M, et al.
[5] DING X J (丁雪佳), XUE H J (薛海蛟), LI H B (李洪波), et al. Mechanical properties, crystallinity, and self-nucleation of carbon
Research progress of rigid polyurethane foam plastics[J]. Chemical nanotube-polyurethane nanocomposites[J]. Polymer Testing, 2019, 79:
Industry and Engineering Progress (化工进展), 2009, 2: 278-282. 106011.
[6] MO Q, LI W, YANG H, et al. Water resistance and corrosion [24] QIU L, ZHU N, FENG Y H, et al. Interfacial thermal transport
protection properties of waterborne polyurethane coating properties of polyurethane/carbon nanotube hybrid composites[J].
3+
enhanced by montmorillonite modified with Ce [J]. Progress in International Journal of Heat and Mass Transfer, 2020, 152: 119565.
Organic Coatings, 2019, 136: 105213. [25] WANG F F, FENG L J, HUANG Y W, et al. Effect of the gradient
[7] LIAO L Y, LI X Y, WANG Y, et al. Effects of surface structure and distribution of multiwalled carbon nanotubes on the bond strength
morphology of nanoclays on the properties of jatropha curcas and corrosion resistance of waterborne polyurethane conductive
oil-based waterborne polyurethane/clay nanocomposites[J]. Industrial nanocomposites[J]. Progress in Organic Coatings, 2020, 140: 105507.
& Engineering Chemistry Research, 2016, 55(45): 11689-11699. [26] YUN S J, IM H, KIM J. The effect of different hard segments in
[8] NACAS A M, ANTONINO L D, CHINELLATO A C, et al. polyurethane on the electrical conductivity of polyurethane grafted
Nano boron nitride/polyurethane adhesives in flexible laminated food multi-walled carbon nanotube/polyurethane nanocomposites[J].
packaging: Peeling resistance and permeability properties[J]. Synthetic Metals, 2011, 161(13): 1361-1367.
International Journal of Adhesion and Adhesives, 2019, 93: 52-58. [27] WANG T, YU W C, ZHOU C G, et al. Self-healing and flexible
[9] WI S, BERARDI U, LORETO S D, et al. Microstructure and thermal carbon nanotube/polyurethane composite for efficient electromagnetic
characterization of aerogel-graphite polyurethane spray-foam interference shielding[J]. Composites Part B: Engineering, 2020,
composite for high efficiency thermal energy utilization[J]. Journal 193: 108015.
of Hazardous Materials, 2020, 397: 122656. [28] LI H, YUAN D, LI P C, et al. High conductive and mechanical
[10] YAZDI M, HADDADI ASL V, POURMOHAMMADI M, et al. robust carbon nanotubes/waterborne polyurethane composite films
Mechanical properties, crystallinity, and self-nucleation of carbon for efficient electromagnetic interference shielding[J]. Composites
nanotube-polyurethane nanocomposites[J]. Polymer Testing, Part A: Applied Science and Manufacturing, 2019, 121: 411-417.
2019, 79: 106011. [29] ZENG Z H, CHEN M J, JIN H, et al. Thin and flexible multi-walled
[11] LIANG X M, CHENG Q F. Synergistic reinforcing effect from carbon nanotube/waterborne polyurethane composites with high-
graphene and carbon nanotubes[J]. Composites Communications, performance electromagnetic interference shielding[J]. Carbon, 2016,
2018, 10: 122-128. 96: 768-777.
[12] RAPHEY V R, HENNA T K, NIVITHA K P, et al. [30] ZUEVA O S, KUSOVA A M, MAKAROVA A O, et al. Reciprocal
Advanced biomedical applications of carbon nanotube[J]. Materials effects of multi-walled carbon nanotubes and oppositely charged
Science and Engineering: C, 2019, 100: 616-630. surfactants in bulk water and at interfaces[J]. Colloids and Surfaces
[13] SAJID M I, JAMSHAID U, JAMSHAID T, et al. Carbon nanotubes A: Physicochemical and Engineering Aspects, 2020, 603: 125296.
from synthesis to in vivo biomedical applications[J]. International [31] ABREU B, ROCHA J, FERNANDES R M F, et al. Gemini
Journal of Pharmaceutics, 2016, 501(1): 278-299. surfactants as efficient dispersants of multiwalled carbon nanotubes:
[14] HU X G, HOU P X, LIU C, et al. Carbon nanotube/silicon Interplay of molecular parameters on nanotube dispersibility and
heterojunctions for photovoltaic applications[J]. Nano Materials debundling[J]. Journal of Colloid and Interface Science, 2019, 547:
Science, 2019, 1(3): 156-172. 69-77.
[15] MU P, MA W Y, ZHAO Y B, et al. Facile preparation of [32] MATANDABUZO M, AJIBADE P A. Synthesis and surface
MnO/nitrogen-doped porous carbon nanotubes composites and their functionalization of multi-walled carbon nanotubes with imidazolium
application in energy storage[J]. Journal of Power Sources, 2019, and pyridinium-based ionic liquids: Thermal stability, dispersibility
426: 33-39. and hydrophobicity characteristics [J]. Journal of Molecular Liquids,
[16] GUAN K J, ZHANG L L, ZHU F Y, et al. Surface modification for 2018, 268: 284-293.
carbon/carbon composites with Mg-CaP coating reinforced by SiC [33] MOHAMMADI A A, DEHGHANI M H, MESDAGHINIA A, et al.
nanowire-carbon nanotube hybrid for biological application[J]. Adsorptive removal of endocrine disrupting compounds from aqueous
Applied Surface Science, 2019, 489: 856-866. solutions using magnetic multi-wall carbon nanotubes modified with
[17] ABDAL-HAY A, TAHA M, MOUSA H M, et al. Engineering of chitosan biopolymer based on response surface methodology:
electrically-conductive poly(ε-caprolactone)/multi-walled carbon Functionalization, kinetics, and isotherms studies[J]. International
nanotubes composite nanofibers for tissue engineering applications[J]. Journal of Biological Macromolecules, 2020, 155: 1019-1029.
Ceramics International, 2019, 45(12): 15736-15740. [34] SAHOO N G, RANA S, CHO J W, et al. Polymer
[18] MUHULET A, MICULESCU F, VOICU S I, et al. Fundamentals and nanocomposites based on functionalized carbon nanotubes[J].
scopes of doped carbon nanotubes towards energy and biosensing Progress in Polymer Science, 2010, 35(7): 837-867.
applications[J]. Materials Today Energy, 2018, 9: 154-186. [35] JON C S, MENG L Y, LI D. Recent review on carbon nanomaterials
[19] OUYANG J. Applications of carbon nanotubes and graphene for functionalized with ionic liquids in sample pretreatment application[J].
third-generation solar cells and fuel cells[J]. Nano Materials Science, TrAC Trends in Analytical Chemistry, 2019, 120: 115641.
2019, 1(2): 77-90. [36] LUO J L (罗健林). Research on preparation and functional performance
[20] JIANG S X, CHEN M F, WANG X Y, et al. A tin disulfide nanosheet of carbon nanotube cement-based composite[D]. Harbin: Harbin
wrapped with interconnected carbon nanotube networks for application Institute of Technology (哈尔滨工业大学), 2009.
of lithium sulfur batteries[J]. Electrochimica Acta, 2019, 313: 151-160. [37] YU J R, GROSSIORD N, KONING C E, et al. Controlling the
[21] MITTAL G, DHAND V, RHEE K Y, et al. A review on carbon dispersion of multi-wall carbon nanotubes in aqueous surfactant
nanotubes and graphene as fillers in reinforced polymer solution[J]. Carbon, 2007, 45(3): 618-623.