Page 46 - 《精细化工》2020年第2期
P. 46

·248·                             精细化工   FINE CHEMICALS                                 第 38 卷

            [38]  CHEN B M (陈北明),YANG D A (杨德安). Dispersion method of   in Organic Coatings, 2020, 142: 105600.
                 carbon nanotubes in the preparation of carbon nanotube/polymer   [51]  NAQVI S T R, RASHEED T, HUSSAIN D,  et al. Modification
                 composites[J]. Material Reports (材料导报), 2007, 21(S1): 99-101.   strategies for improving the solubility/dispersion of carbon nanotubes[J].
            [39]  LIN Q (林强), LUO Z (罗珍), BAO J J (鲍俊杰), et al. Preparation   Journal of Molecular Liquids, 2020, 297: 111919.
                 and  properties of waterborne  polyurethane/cyclodextrin modified   [52]  SHRESTHA S, SHRESTHA B K, LEE J, et al. A conducting neural
                 multi-wall carbon nanotube composites[J]. Electroplating & Finishing   interface of polyurethane/silk-functionalized multiwall carbon nanotubes
                 (电镀与涂饰), 2015, 34(22): 1282-1287.                 with enhanced mechanical strength for neuroregeneration[J]. Materials
            [40]  GU B E, HUANG C Y, SHEN T H, et al. Effects of multiwall carbon   Science and Engineering: C, 2019, 102: 511-523.
                 nanotube addition on  the corrosion resistance and  underwater   [53]  DUAN H F (段华锋), WANG S H (王少辉), HOU C Y(侯彩英), et
                 acoustic absorption properties of polyurethane coatings[J]. Progress   al. Preparation  and characterization  of waterborne polyurethane/
                 in Organic Coatings, 2018, 121: 226-235.          sodium dodecylbenzenesulfonate modified MWCNTS and their
            [41]  ZHANG S D, SUN K, LIU H,  et al. Enhanced piezoresistive   properties by epoxy groups[J]. Function Materials (功能材料), 2019,
                 performance of conductive WPU/CNT composite foam through   50(6): 6155-6161.
                 incorporating brittle cellulose nanocrystal[J]. Chemical Engineering   [54]  LI S S, DU X, HOU C Y, et al. One-pot two-step perfluoroalkylsilane
                 Journal, 2020, 387: 124045.                       functionalization  of  multi-walled  carbon  nanotubes  for
            [42]  WANG B M (王宝民), HAN Y (韩瑜), SONG K (宋凯). Research   polyurethane- based composites[J]. Composites Science and
                 progress on dispersion of carbon nanotubes[J]. Material Reports (材  Technology, 2017, 143: 46-55.
                 料导报), 2012, 26(7): 23-25, 30.                 [55]  YAGHOUBI A, ALAVI NIKJE M M. Silanization of multi-walled
            [43]  XIE Z  Q (解芝茜), SHI Y  Y (石阳阳), HAN F  L (韩飞龙), et al.   carbon  nanotubes and the study of its effects on the  properties of
                 Preparation and characterization of waterborne polyurethane/sodium   polyurethane rigid foam nanocomposites[J]. Composites Part A:
                 dodecylbenzenesulfonate  modified multi-wall carbon nanotubes   Applied Science and Manufacturing, 2018, 109: 338-344.
                 (MWCNTS) composites[J]. Paint & Coatings Industry (涂料工业),   [56]  DU X S,  XU J N, DENG S,  et al. Amino-functionalized
                 2015, 4: 54-59.                                   single-walled carbon nanotubes-integrated polyurethane phase change
            [44]  QIAO M, RAN Q P, WU S S. Novel star-like surfactant as dispersant   composites with superior photothermal conversion efficiency and
                 for multi-walled carbon nanotubes in aqueous  suspensions at high   thermal  conductivity[J]. ACS Sustainable  Chemistry & Engineering:
                 concentration[J]. Applied Surface Science, 2018, 433: 975-982.   American Chemical Society, 2019, 7(21): 17682-17690.
            [45]  KUBISA P. Ionic liquids as solvents for polymerization  processes-   [57]  BAI J J (白静静), HU G S (胡国胜), ZHANG J T (张静婷), et al.
                 Progress and challenges[J]. Progress in Polymer Science, 2009,   In-situ polymerization and property of CNT-NCO/TPU composite[J].
                 34(12): 1333-1347.                                New Chemical Materials (化工新型材料), 2020, 48(2): 60-65.
            [46]  SOARES B G. Ionic liquid: A smart approach for developing   [58]  MA Y L (马宇良), FANG X (方雪), SU G M (苏桂明), et al. Current
                 conducting polymer composites: A review[J]. Journal of Molecular   progress  on the surface  modification for carbon nanotubes[J].
                 Liquids, 2018, 262: 8-18.                         Chemical Engineer (化学工程师), 2016, 30(4): 35-39.
            [47]  SOARES B G, RIANY N, SILVA A A,  et al. Dual-role of   [59]  GAO R  L, RAMIREZ S M, INGLEFIELD D L, et al. The
                 phosphonium-based ionic liquid in epoxy/MWCNT systems: Electric,   preparation of cation-functionalized multi-wall carbon  nanotube/
                 rheological behavior and electromagnetic interference shielding   sulfonated polyurethane composites[J]. Carbon, 2013, 54: 133-142.
                 effectiveness[J]. European Polymer Journal, 2016, 84: 77-88.   [60]  ABOUSALMAN-REZVANI Z, ESKANDARI P,  ROGHANI-
            [48]  MONDAL T, BASAK S, BHOWMICK A K. Ionic liquid modification   MAMAQANI H,  et al. Functionalization of carbon  nanotubes by
                 of graphene oxide and its role towards controlling the porosity, and   combination of controlled radical polymerization and “grafting  to”
                 mechanical robustness of polyurethane foam[J]. Polymer, 2017, 127:   method[J]. Advances  in Colloid and  Interface  Science, 2020, 278:
                 106-118.                                          102126.
            [49]  XIANG D, ZHANG X Z, LI Y T, et al. Enhanced performance of 3D   [61]  HUANG K, PISHARATH S, NG S-C. Preparation of polyurethane-
                 printed highly elastic strain sensors of carbon nanotube/thermoplastic   carbon nanotube composites using ‘click’ chemistry[J]. Tetrahedron
                 polyurethane nanocomposites  via non-covalent  interactions[J].   Letters, 2015, 56(4): 577-580.
                 Composites Part B: Engineering, 2019, 176: 107250.   [62]  WANG T,  YU W  C, ZHOU C G,  et al. Self-healing and flexible
            [50]  ZHOU X,  DENG J R, FANG C Q,  et al. Preparation and   carbon nanotube/polyurethane composite for efficient electromagnetic
                 characterization of lysozyme@carbon nanotubes/waterborne polyurethane   interference shielding[J]. Composites Part B: Engineering,  2020,
                 composite and the potential application in printing inks[J]. Progress   193: 108015.


            (上接第 225 页)                                            Properties of electroactive gelatin-graft-polyaniline hydrogel[J].
                                                                   Journal of Nanjing Medical University (南京医科大学学报), 2017,
            [72]  LE B J, VIAU L,  VIOUX A. Ionogels, ionic liquid based hybrid   37(9): 1173-1176, 1184.
                 materials[J]. Chemical Society Reviews, 2011, 40(2): 907-925.   [78]  LIU Z  Y, WANG Y, REN  Y Y,  et al. Poly(ionic liquid)
            [73]  KEPLINGER C, SUN J Y, FOO C C, et al. Stretchable, transparent,   hydrogel- based anti-freezing ionic skin for a soft robotic gripper[J].
                 ionic conductors[J]. Science, 2013, 341(6149): 984-987.   Materials Horizons, 2020, 7(3): 919-927.
            [74]  TAO F, QIN L M, WANG Z K, et al. Self-healable and cold-resistant   [79]  YANG Y Y, YANG Y T, CAO Y X, et al. Anti-freezing, resilient and
                 supercapacitor  based on a multifunctional hydrogel electrolyte[J].   tough hydrogels for sensitive and large-range strain and pressure
                 ACS Applied Materials & Interfaces, 2017, 9(18): 15541-15548.   sensors[J]. Chemical Engineering Journal, 2021, 403: 126431.
            [75]  HUANG Y, ZHONG M, HUANG Y, et al. A self-healable and highly   [80]  YANG Y Q, GUAN L, LI X Y, et al. Conductive organohydrogels
                 stretchable supercapacitor based on a dual crosslinked polyelectrolyte[J].   with ultrastretchability, antifreezing, self-healing, and adhesive properties
                 Nature Communications, 2015, 6: 10310.            for motion detection and signal transmission[J]. ACS Applied
            [76]  ZHU Y, LU W P, GUO Y C, et al. Biocompatible, stretchable and   Materials & Interfaces, 2019, 11(3): 3428-3437.
                 mineral PVA-gelatin-nHAP hydrogel for  highly sensitive pressure   [81]  CHEN H, REN X Y, GAO G H. Skin-inspired gels with toughness,
                 sensors[J]. RSC Advances, 2018, 8(65): 36999-37007.   antifreezing, conductivity, and remoldability[J]. ACS Applied
            [77]  WU T  Y (吴天一), BU S S (卜寿山), ZHUANG  H (庄海), et al.   Materials & Interfaces, 2019, 11(31): 28336-28344.
   41   42   43   44   45   46   47   48   49   50   51