Page 46 - 《精细化工》2020年第2期
P. 46
·248· 精细化工 FINE CHEMICALS 第 38 卷
[38] CHEN B M (陈北明),YANG D A (杨德安). Dispersion method of in Organic Coatings, 2020, 142: 105600.
carbon nanotubes in the preparation of carbon nanotube/polymer [51] NAQVI S T R, RASHEED T, HUSSAIN D, et al. Modification
composites[J]. Material Reports (材料导报), 2007, 21(S1): 99-101. strategies for improving the solubility/dispersion of carbon nanotubes[J].
[39] LIN Q (林强), LUO Z (罗珍), BAO J J (鲍俊杰), et al. Preparation Journal of Molecular Liquids, 2020, 297: 111919.
and properties of waterborne polyurethane/cyclodextrin modified [52] SHRESTHA S, SHRESTHA B K, LEE J, et al. A conducting neural
multi-wall carbon nanotube composites[J]. Electroplating & Finishing interface of polyurethane/silk-functionalized multiwall carbon nanotubes
(电镀与涂饰), 2015, 34(22): 1282-1287. with enhanced mechanical strength for neuroregeneration[J]. Materials
[40] GU B E, HUANG C Y, SHEN T H, et al. Effects of multiwall carbon Science and Engineering: C, 2019, 102: 511-523.
nanotube addition on the corrosion resistance and underwater [53] DUAN H F (段华锋), WANG S H (王少辉), HOU C Y(侯彩英), et
acoustic absorption properties of polyurethane coatings[J]. Progress al. Preparation and characterization of waterborne polyurethane/
in Organic Coatings, 2018, 121: 226-235. sodium dodecylbenzenesulfonate modified MWCNTS and their
[41] ZHANG S D, SUN K, LIU H, et al. Enhanced piezoresistive properties by epoxy groups[J]. Function Materials (功能材料), 2019,
performance of conductive WPU/CNT composite foam through 50(6): 6155-6161.
incorporating brittle cellulose nanocrystal[J]. Chemical Engineering [54] LI S S, DU X, HOU C Y, et al. One-pot two-step perfluoroalkylsilane
Journal, 2020, 387: 124045. functionalization of multi-walled carbon nanotubes for
[42] WANG B M (王宝民), HAN Y (韩瑜), SONG K (宋凯). Research polyurethane- based composites[J]. Composites Science and
progress on dispersion of carbon nanotubes[J]. Material Reports (材 Technology, 2017, 143: 46-55.
料导报), 2012, 26(7): 23-25, 30. [55] YAGHOUBI A, ALAVI NIKJE M M. Silanization of multi-walled
[43] XIE Z Q (解芝茜), SHI Y Y (石阳阳), HAN F L (韩飞龙), et al. carbon nanotubes and the study of its effects on the properties of
Preparation and characterization of waterborne polyurethane/sodium polyurethane rigid foam nanocomposites[J]. Composites Part A:
dodecylbenzenesulfonate modified multi-wall carbon nanotubes Applied Science and Manufacturing, 2018, 109: 338-344.
(MWCNTS) composites[J]. Paint & Coatings Industry (涂料工业), [56] DU X S, XU J N, DENG S, et al. Amino-functionalized
2015, 4: 54-59. single-walled carbon nanotubes-integrated polyurethane phase change
[44] QIAO M, RAN Q P, WU S S. Novel star-like surfactant as dispersant composites with superior photothermal conversion efficiency and
for multi-walled carbon nanotubes in aqueous suspensions at high thermal conductivity[J]. ACS Sustainable Chemistry & Engineering:
concentration[J]. Applied Surface Science, 2018, 433: 975-982. American Chemical Society, 2019, 7(21): 17682-17690.
[45] KUBISA P. Ionic liquids as solvents for polymerization processes- [57] BAI J J (白静静), HU G S (胡国胜), ZHANG J T (张静婷), et al.
Progress and challenges[J]. Progress in Polymer Science, 2009, In-situ polymerization and property of CNT-NCO/TPU composite[J].
34(12): 1333-1347. New Chemical Materials (化工新型材料), 2020, 48(2): 60-65.
[46] SOARES B G. Ionic liquid: A smart approach for developing [58] MA Y L (马宇良), FANG X (方雪), SU G M (苏桂明), et al. Current
conducting polymer composites: A review[J]. Journal of Molecular progress on the surface modification for carbon nanotubes[J].
Liquids, 2018, 262: 8-18. Chemical Engineer (化学工程师), 2016, 30(4): 35-39.
[47] SOARES B G, RIANY N, SILVA A A, et al. Dual-role of [59] GAO R L, RAMIREZ S M, INGLEFIELD D L, et al. The
phosphonium-based ionic liquid in epoxy/MWCNT systems: Electric, preparation of cation-functionalized multi-wall carbon nanotube/
rheological behavior and electromagnetic interference shielding sulfonated polyurethane composites[J]. Carbon, 2013, 54: 133-142.
effectiveness[J]. European Polymer Journal, 2016, 84: 77-88. [60] ABOUSALMAN-REZVANI Z, ESKANDARI P, ROGHANI-
[48] MONDAL T, BASAK S, BHOWMICK A K. Ionic liquid modification MAMAQANI H, et al. Functionalization of carbon nanotubes by
of graphene oxide and its role towards controlling the porosity, and combination of controlled radical polymerization and “grafting to”
mechanical robustness of polyurethane foam[J]. Polymer, 2017, 127: method[J]. Advances in Colloid and Interface Science, 2020, 278:
106-118. 102126.
[49] XIANG D, ZHANG X Z, LI Y T, et al. Enhanced performance of 3D [61] HUANG K, PISHARATH S, NG S-C. Preparation of polyurethane-
printed highly elastic strain sensors of carbon nanotube/thermoplastic carbon nanotube composites using ‘click’ chemistry[J]. Tetrahedron
polyurethane nanocomposites via non-covalent interactions[J]. Letters, 2015, 56(4): 577-580.
Composites Part B: Engineering, 2019, 176: 107250. [62] WANG T, YU W C, ZHOU C G, et al. Self-healing and flexible
[50] ZHOU X, DENG J R, FANG C Q, et al. Preparation and carbon nanotube/polyurethane composite for efficient electromagnetic
characterization of lysozyme@carbon nanotubes/waterborne polyurethane interference shielding[J]. Composites Part B: Engineering, 2020,
composite and the potential application in printing inks[J]. Progress 193: 108015.
(上接第 225 页) Properties of electroactive gelatin-graft-polyaniline hydrogel[J].
Journal of Nanjing Medical University (南京医科大学学报), 2017,
[72] LE B J, VIAU L, VIOUX A. Ionogels, ionic liquid based hybrid 37(9): 1173-1176, 1184.
materials[J]. Chemical Society Reviews, 2011, 40(2): 907-925. [78] LIU Z Y, WANG Y, REN Y Y, et al. Poly(ionic liquid)
[73] KEPLINGER C, SUN J Y, FOO C C, et al. Stretchable, transparent, hydrogel- based anti-freezing ionic skin for a soft robotic gripper[J].
ionic conductors[J]. Science, 2013, 341(6149): 984-987. Materials Horizons, 2020, 7(3): 919-927.
[74] TAO F, QIN L M, WANG Z K, et al. Self-healable and cold-resistant [79] YANG Y Y, YANG Y T, CAO Y X, et al. Anti-freezing, resilient and
supercapacitor based on a multifunctional hydrogel electrolyte[J]. tough hydrogels for sensitive and large-range strain and pressure
ACS Applied Materials & Interfaces, 2017, 9(18): 15541-15548. sensors[J]. Chemical Engineering Journal, 2021, 403: 126431.
[75] HUANG Y, ZHONG M, HUANG Y, et al. A self-healable and highly [80] YANG Y Q, GUAN L, LI X Y, et al. Conductive organohydrogels
stretchable supercapacitor based on a dual crosslinked polyelectrolyte[J]. with ultrastretchability, antifreezing, self-healing, and adhesive properties
Nature Communications, 2015, 6: 10310. for motion detection and signal transmission[J]. ACS Applied
[76] ZHU Y, LU W P, GUO Y C, et al. Biocompatible, stretchable and Materials & Interfaces, 2019, 11(3): 3428-3437.
mineral PVA-gelatin-nHAP hydrogel for highly sensitive pressure [81] CHEN H, REN X Y, GAO G H. Skin-inspired gels with toughness,
sensors[J]. RSC Advances, 2018, 8(65): 36999-37007. antifreezing, conductivity, and remoldability[J]. ACS Applied
[77] WU T Y (吴天一), BU S S (卜寿山), ZHUANG H (庄海), et al. Materials & Interfaces, 2019, 11(31): 28336-28344.