Page 65 - 《精细化工》2020年第2期
P. 65
第 2 期 张兆宇,等: 刺激响应型 Pickering 乳液的制备及应用进展 ·267·
随着水相 pH 变化,这种乳化/破乳作用可以经 studies in liquid-liquid dispersions[J]. The Canadian Journal of
历多个循环,而乳化剂的性能只略有下降。同时由 Chemical Engineering, 1998, 76: 486-494.
[9] BINKS B P, LUMSDON S O. Transitional phase inversion of
于 Au 纳米颗粒在油水界面的出色催化性能,乳液
solid-stabilized emulsions using particle mixtures[J]. Langmuir,
液滴的大界面面积以及 pH 可逆乳化/破乳循环,该 2000, 16: 3748-3756.
[10] BINKS B P, LUMSDON S O. Influence of particle wettability on the
Pickering 乳液可以用作催化微反应器,通过 NaBH 4
催化对硝基苯甲醚的还原反应,该催化剂显示出高 type and stability of surfactant-free emulsions[J]. Langmuir, 2000,
16(23): 8622-8631.
催化活性和良好的可回收性。 [11] HUANG F L, LIANG Y D, HE Y J. On the Pickering emulsions
stabilized by calcium carbonate particles with various
4 结语与展望 morphologies[J]. Colloids and Surfaces A: Physicochemical and
Engineering Aspects, 2019, 580: 123722-123732.
综述了 Pickering 乳液稳定性影响因素、固体颗 [12] LIN Q, XU M D, CUI Z G, et al. Structure and stabilization
粒乳化剂的改性方法、刺激响应型 Pickering 乳液的 mechanism of diesel oil-in-water emulsions stabilized solely by either
positively or negatively charged nanoparticles[J]. Colloids and Surfaces
构建、调控及应用。可以预见设计新型固体颗粒乳
A: Physicochemical and Engineering Aspects, 2019, 573: 30-39.
化剂和新颖刺激响应型 Pickering 乳液的制备及应用 [13] FRELICHOWSKA J, BOLZINGER M A, CHEVALIER Y. Pickering
仍是研究热点。目前固体颗粒乳化剂的制备通常存 emulsions with bare silica[J]. Colloids and Surfaces A: Physicochemical
在合成和化学接枝步骤复杂、成本高、耗时长等缺 and Engineering Aspects, 2009, 343(1/2/3): 70-74.
[14] LI Q, ZHAO T T, LI M, et al. One-step construction of Pickering
点。作者认为未来的重点研究方向为:(1)非共价
emulsion via commercial TiO 2 nanoparticles for photocatalytic dye
作用改性固体颗粒及利用不同固体颗粒间的协同作 degradation[J]. Applied Catalysis B: Environmental, 2019, 249: 1-8.
用来丰富 Pickering 乳液乳化剂种类,使其具有普适 [15] LI C, LI Y X, SUN P D, et al. Pickering emulsions stabilized by
native starch granules[J]. Colloids and Surfaces A: Physicochemical
性;(2)目前常用的化学刺激触发 Pickering 乳液稳
and Engineering Aspects, 2013, 431: 142-149.
定性转化的方式(如 pH、离子浓度和盐浓度等)会 [16] SHAO P, ZHANG H Y, NIU B, et al. Physical stabilities of taro
破坏原有乳液体系物理性质且不利于乳液循环使 starch nanoparticles stabilized Pickering emulsions and the potential
用,应深入探索生产新型无毒、响应快、易调控、 application of encapsulated tea polyphenols[J]. International Journal
of Biological Macromolecules, 2018, 118: 2032-2039.
可循环使用的刺激响应型 Pickering 乳液;(3)虽然
[17] KLINKESORN U. The role of chitosan in emulsion formation and
Pickering 乳液在多领域具有潜在的应用,但目前实 stabilization[J]. Food Reviews International, 2013, 29(4): 371-393.
际使用范围较窄,今后应拓展 Pickering 乳液的应用 [18] SCHULZ P C, RODR G M S, DEL BLANCO L F, et al.
领域,尤其 Pickering 乳液在新材料开发及制备领域 Emulsification properties of chitosan[J]. Colloid and Polymer Science,
1998, 276(12): 1159-1165.
的应用有待进一步探究和实践。
[19] DEL BLANCO L F, RODRIGUEZ M S, SCHULZ P C, et al.
Influence of the deacetylation degree on chitosan emulsification
参考文献:
properties[J]. Colloid and Polymer Science, 1999, 277(11): 1087-1092.
[1] TADROS T, IZQUIERDO P, ESQUENA J, et al. Formation and [20] WANG X Y, HEUZEY M C. Chitosan-based conventional and
stability of nano-emulsions[J]. Advances in Colloid and Interface Pickering emulsions with long-term stability[J]. Langmuir, 2016,
Science, 2004, 108/109: 303-318. 32(4): 929-936.
[2] SCHERLUND M, MALMSTEN M, BRODIN A. Stabilization of a [21] SAIGAL T, YOSHIKAWA A, KLOSS D, et al. Stable emulsions with
thermosetting emulsion system using ionic and nonionic surfactants[J]. thermally responsive microstructure and rheology using poly(ethylene
International Journal of Pharmaceutics, 1998, 173(1): 103-116. oxide) star polymers as emulsifiers[J]. Journal of Colloid and Interface
[3] RAMSDEN W. Separation of solids in the surface-layers of solutions Science, 2013, 394: 284-292.
and ‘suspensions’ (observations on surface-membranes, bubbles, [22] BINKS B P, WHITBY C P. Silica particle-stabilized emulsions of
emulsions, and mechanical coagulation).—Preliminary account[J]. silicone oil and water: Aspects of emulsification[J]. Langmuir, 2004,
Proceedings of the Royal Society of London, 1903, 72(477/478/479/ 20(4): 1130-1137.
480/481/482/483/484/485/486): 156-164. [23] YOON K Y, SON H A, CHOI S K, et al. Core flooding of complex
[4] PICKERING S U. Emulsions[J]. Journal of the Chemical Society, nanoscale colloidal dispersions for enhanced oilrecovery by in situ
1907, 91: 2001-2021. formation of stable oil-in-water Pickering emulsions[J]. Energy &
[5] JANG Q Y (姜秋艳), LI Z C (李自闯), LI Q H (李秋红), et al. Fuels, 2016, 30(4): 2628-2635.
Hydrophobic modification of core-shell nanoparticles and its [24] XIAO Z X, CAO H Y, JIANG X B, et al. Pickering emulsion
stabilizing effect on Pickering emulsions[J]. Fine Chemicals (精细化 formation of paraffin wax in an ethanol-water mixture stabilized by
工), 2018, 35(12): 2006-2010, 2016. primary polymer particles and wax microspheres thereof[J]. Langmuir,
[6] JIANG Q Y, SUN N, LI Q H, et al. Redox-responsive Pickering 2018, 34(6): 2282-2289.
emulsions based on silica nanoparticles and electrochemical active [25] YU S J, ZHANG D Y, JIANG J Z, et al. Redox-responsive Pickering
fluorescent molecules[J]. Langmuir, 2019, 35(17): 5848-5854. emulsions stabilized by silica nanoparticles and ferrocene surfactants
[7] BINKS B P. Particles as surfactants-similarities and differences[J]. at a very low concentration[J]. ACS Sustainable Chemistry &
Current Opinion in Colloid & Interface Science, 2002, 7(1): 21-41. Engineering, 2019, 7(19): 15904-15912.
[8] NORATO M A, TSOURIS C, TAVLARIDES L L. Phase inversion [26] FAN Y (樊晔), NIU T (牛田), FANG Y (方云), et al. Preparation of