Page 53 - 《精细化工》2021年第3期
P. 53
第 3 期 张华旭,等: 水系锌离子电池二氧化锰正极的储能特性及机理研究进展 ·473·
mechanisms, and applications[J]. Materials Science and Engineering: zinc storage in a structurally stable α-MnO 2 nanorod electrode[J].
R: Reports, 2019, 135: 58-84. Journal of Power Sources, 2015, 288: 320-327.
[24] YU P, ZENG Y X, ZHANG H Z, et al. Flexible Zn-ion batteries: [45] XU C J, DU H D, LI B H, et al. Capacitive behavior and charge
Recent progresses and challenges[J]. Small, 2019, 15(7): 1804760. storage mechanism of manganese dioxide in aqueous solution containing
[25] ZENG X H, HAO J N, WANG Z J, et al. Recent progress and bivalent cations[J]. Journal of the Electrochemical Society, 2009,
perspectives on aqueous Zn-based rechargeable batteries with mild 156(1): A73- A78.
aqueous electrolytes[J]. Energy Storage materials, 2019, 20: 410-437. [46] LEE B, YOON C S, LEE H R, et al. Electrochemically-induced reversible
[26] SONG M, TAN H, CHAO D L, et al. Recent advances in Zn-ion transition from the tunneled to layered polymorphs of manganese
batteries[J]. Advanced Functional Materials, 2018, 28(41): 1802564. dioxide[J]. Scientific Reports, 2014, 4: 6066.
[27] CHEN L N (陈丽能), YAN M Y (晏梦雨), MEI Z W (梅志文), et al. [47] LEE B, SEO H R, LEE H R, et al. Critical role of pH evolution of
Research progress and prospect of aqueous zinc ion battery[J]. electrolyte in the reaction mechanism for rechargeable zinc batteries[J].
Journal of Inorganic Materials (无机材料学报), 2017, 32(3): 225-234. ChemSusChem, 2016, 9: 1-10.
[28] CHEN J G (陈均桄). Research progress of manganese-based compounds [48] CHENG S, YANG L F, CHEN D C, et al. Phase evolution of an
as cathode in aqueous zion ion secondary batteries[J]. Journal of alpha MnO 2-based electrode for pseudo-capacitors probed by in
Nanning Normal University (Natural Science Edition) (南宁师范大 operando Raman spectroscopy[J]. Nano Energy, 2014, 9: 161-167.
学学报: 自然科学版), 2020, 37(1): 75-80. [49] ALFARUQI M H, MATHEW V, GIM J, et al. Electrochemically
[29] HAN M M, HUANG J W, LIANG S Q, et al. Oxygen defects in induced structural transformation in a γ-MnO 2 cathode of a high
beta-MnO 2 enabling high-performance rechargeable aqueous capacity zinc-ion battery system[J]. Chemistry of Materials, 2015,
zinc/manganese dioxide battery[J]. iScience, 2020, 23(1): 100797. 27(10): 3609-3620.
[30] SUN W, WANG F, HOU S Y, et al. Zn/MnO 2 battery chemistry with [50] TAKAKACU Y, TAKAYUKI S. Rechargeable Zn|ZnSO 4|MnO 2-type
2+
+
H and Zn coinsertion[J]. Journal of the American Chemical Society, cells[J]. Inorganica Chimica Acta, 1986, 117: L27-L28.
2017, 139(29): 9775-9778. [51] KUMAR G, SAMPATH S. Electrochemical characterization of
[31] SHI M J, XIAO P, YANG C, et al. Scalable gas-phase synthesis of poly(vinylidenefluoride)-zinc triflategel polymer electrolyte and its
3D microflowers confining MnO 2 nanowires for highly-durable application in solid-state zinc batteries[J]. Solid State Ionics, 2003,
aqueous zinc-ion batteries[J]. Journal of Power Sources, 2020, 463: 160(3/4): 289-300.
28209. [52] CHOU S L, CHENG F Y, CHEN J. Electrodeposition synthesis and
2+
4+
[32] ZENG X H, LIU J T, MAO J F, et al. Toward a reversible Mn /Mn electrochemical properties of nanostructured γ-MnO 2 films[J].
redox reaction and dendrite-free Zn anode in near-neutral aqueous Journal of Power Sources, 2006, 162(1): 727-734.
Zn/MnO 2 batteries via salt anion chemistry[J]. Advanced Energy [53] WANG C, ZENG Y X, XIAO X, et al. γ-MnO 2 nanorods/graphene
Materials, 2020, 10(32): 1904163. composite as efficient cathode for advanced rechargeable aqueous
[33] CHAO D L, ZHOU W H, YE C, et al. An electrolytic Zn-MnO 2 zinc-ion battery[J]. Journal of Energy Chemistry, 2020, 43: 182-187.
battery for high-voltage and scalable energy storage[J]. Angewandte [54] SUN H J, CHEN H Y, SHU D, et al. Supercapacitive behavior and
Chemie International Edtion, 2019, 58(23): 7823-7828. high cycle stability of todorokite-type manganese oxide with large
[34] LI Y, WANG S Y, SALVADOR J R, et al. Reaction mechanisms for tunnels[J]. Journal of Power Sources, 2012, 203: 233-242.
long-life rechargeable Zn/MnO 2 batteries[J]. Chemistry of Materials, [55] ZHAO Y L, ZHU Y H, ZHANG X B. Challenges and perspectives
2019, 31(6): 2036-2047. for manganese-based oxides for advanced aqueous zinc-ion
[35] HUANG J H, WANG Z, HOU M Y, et al. Polyaniline-intercalated batteries[J]. Infomat, 2020, 2(2): 237-260.
manganese dioxide nanolayers as a high-performance cathode [56] LEE J, JU J B, CHO W I, et al. Todorokite-type MnO 2 as a zinc-ion
material for an aqueous zinc-ion battery[J]. Nature Communications, intercalating material[J]. Electrochimica Acta, 2013, 112: 138-143.
2018, 9(1): 2906. [57] HE Y J, PENG J F, CHU W, et al. Retracted article: Black
[36] HAO J W, MOU J, ZHANG J W, et al. Electrochemically induced mesoporous anatase TiO 2 nanoleaves: A high capacity and high rate
spinel-layered phase transition of Mn 3O 4 in high performance neutral anode for aqueous Al-ion batteries[J]. Journal of Materials Chemistry
aqueous rechargeable zinc battery[J]. Electrochimica Acta, 2018, A, 2014, 2(6): 1721-1731.
259: 170-178. [58] WANG L L, CAO X, XU L H, et al. Transformed akhtenskite MnO 2
[37] ISLAM S, ALFARUQI M H, MATHEW V, et al. Facile synthesis from Mn 3O 4 as cathode for rechargeable aqueous zinc-ion battery[J].
and the exploration of the zinc storage mechanism of β-MnO 2 ACS Sustainable Chemistry & Engineering, 2018, 6(12): 16055-
nanorods with exposed (101) planes as a novel cathode material for 16063.
high performance eco-friendly zinc-ion batteries[J]. Journal of Materials [59] ALFARUQI M H, GIM J, KIM S, et al. A layered δ-MnO 2 nanoflake
Chemistry A, 2017, 5(44): 23299-23309. cathode with high zinc-storage capacities for eco-friendly battery
[38] ZHANG N, CHENG F Y, LIU J X, et al. Rechargeable aqueous applications[J]. Electrochemistry Communications, 2015, 60: 121-125.
zinc-manganese dioxide batteries with high energy and power [60] KO J S, SASSIN M B, PARKER J F, et al. Combining battery-like
densities[J]. Nature Communications, 2017, 8(1): 405. and pseudocapacitive charge storage in 3D MnO x@carbon electrode
[39] XIONG T, YU Z G, WU H J, et al. Defect engineering of oxygen- architectures for zinc-ion cells[J]. Sustainable Energy & Fuels, 2018,
deficient manganese oxide to achieve high-performing aqueous zinc 2(3): 626-636.
ion battery[J]. Advanced Energy Materials, 2019, 9(14): 1803815. [61] YANG C Y, CHEN J, JI X, et al. Aqueous Li-ion battery enabled by
[40] PAN H L, SHAO Y Y, YAN P F, et al. Reversible aqueous zinc/ halogen conversion-intercalation chemistry in graphite[J]. Nature,
manganese oxide energy storage from conversion reactions[J]. Nature 2019, 569(7755): 245-250.
Energy, 2016, 1(5): 1-7. [62] YUAN C L, ZHANG Y, PAN Y, et al. Investigation of the
2+
2+
[41] QIU W D, LI Y, YOU A, et al. High-performance flexible quasi- intercalation of polyvalent cations (Mg , Zn ) into λ-MnO 2 for
solid-state Zn-MnO 2 battery based on MnO 2 nanorod arrays coated rechargeable aqueous battery[J]. Electrochimica Acta, 2014, 116:
3D porous nitrogen-doped carbon cloth[J]. Journal of Materials 404-412.
Chemistry A, 2017, 5(28): 14838-14846. [63] ZHANG N, CHENG F Y, LIU Y C, et al. Cation-deficient spinel
[42] WU B K, ZHANG G B, YAN M Y, et al. Graphene scroll-coated ZnMn 2O 4 cathode in Zn(CF 3SO 3) 2 electrolyte for rechargeable
alpha-MnO 2 nanowires as high-performance cathode materials for aqueous Zn-ion battery[J]. Journal of the American Chemical
aqueous Zn-ion battery[J]. Small, 2018, 14(13): 1703850. Society, 2016, 138(39): 12894-12901.
[43] GUO C, TIAN S, CHEN B L, et al. Constructing α-MnO 2@PPy [64] WEI C G, XU C J, LI B H, et al. Preparation and characterization of
core-shell nanorods towards enhancing electrochemical behaviors in manganese dioxides with nano-sized tunnel structures for zinc ion
aqueous zinc ion battery[J]. Materials Letters, 2020, 262: 127180. storage[J]. Journal of Physics and Chemistry of Solids, 2012, 73(12):
[44] ALFARUQI M H, GIM J, KIM S, et al. Enhanced reversible divalent 1487-1491.