Page 53 - 《精细化工》2021年第3期
P. 53

第 3 期               张华旭,等:  水系锌离子电池二氧化锰正极的储能特性及机理研究进展                                    ·473·


                 mechanisms, and applications[J]. Materials Science and Engineering:   zinc storage in a structurally stable  α-MnO 2 nanorod electrode[J].
                 R: Reports, 2019, 135: 58-84.                     Journal of Power Sources, 2015, 288: 320-327.
            [24]  YU P, ZENG Y X, ZHANG H Z,  et al. Flexible Zn-ion batteries:   [45]  XU C J, DU  H D, LI B H,  et al.  Capacitive behavior and charge
                 Recent progresses and challenges[J]. Small, 2019, 15(7): 1804760.     storage mechanism of manganese dioxide in aqueous solution containing
            [25]  ZENG X H, HAO J N,  WANG Z J,  et al.  Recent progress and   bivalent cations[J]. Journal of the Electrochemical Society, 2009,
                 perspectives on aqueous Zn-based rechargeable batteries with mild   156(1): A73- A78.
                 aqueous electrolytes[J]. Energy Storage materials, 2019, 20: 410-437.     [46]  LEE B, YOON C S, LEE H R, et al. Electrochemically-induced reversible
            [26]  SONG M, TAN H, CHAO  D L,  et al.  Recent advances  in Zn-ion   transition from the tunneled to layered polymorphs of manganese
                 batteries[J]. Advanced Functional Materials, 2018, 28(41): 1802564.     dioxide[J]. Scientific Reports, 2014, 4: 6066.
            [27]  CHEN L N (陈丽能), YAN M Y (晏梦雨), MEI Z W (梅志文), et al.   [47]  LEE B, SEO H R, LEE H R, et al. Critical role of pH evolution of
                 Research progress and prospect of aqueous zinc ion battery[J].   electrolyte in the reaction mechanism for rechargeable zinc batteries[J].
                 Journal of Inorganic Materials (无机材料学报), 2017, 32(3): 225-234.     ChemSusChem, 2016, 9: 1-10.
            [28]  CHEN J G (陈均桄). Research progress of manganese-based compounds   [48]  CHENG S, YANG L F, CHEN D C,  et al. Phase  evolution of an
                 as cathode in aqueous zion ion  secondary batteries[J]. Journal of   alpha MnO 2-based electrode for  pseudo-capacitors  probed by in
                 Nanning Normal University (Natural Science Edition) (南宁师范大  operando Raman spectroscopy[J]. Nano Energy, 2014, 9: 161-167.
                 学学报:  自然科学版), 2020, 37(1): 75-80.             [49]  ALFARUQI M H, MATHEW V, GIM J,  et al.  Electrochemically
            [29]  HAN M M, HUANG J W,  LIANG  S Q,  et al.  Oxygen defects in   induced  structural transformation in  a  γ-MnO 2 cathode of a high
                 beta-MnO 2 enabling high-performance rechargeable aqueous   capacity zinc-ion battery system[J]. Chemistry of Materials, 2015,
                 zinc/manganese dioxide battery[J]. iScience, 2020, 23(1): 100797.     27(10): 3609-3620.
            [30]  SUN W, WANG F, HOU S Y, et al. Zn/MnO 2 battery chemistry with   [50]  TAKAKACU Y, TAKAYUKI S. Rechargeable Zn|ZnSO 4|MnO 2-type
                       2+
                  +
                 H and Zn coinsertion[J]. Journal of the American Chemical Society,   cells[J]. Inorganica Chimica Acta, 1986, 117: L27-L28.
                 2017, 139(29): 9775-9778.                     [51]  KUMAR G, SAMPATH S. Electrochemical characterization of
            [31]  SHI M J, XIAO P, YANG C, et al. Scalable gas-phase synthesis of   poly(vinylidenefluoride)-zinc triflategel polymer  electrolyte and its
                 3D microflowers  confining  MnO 2 nanowires for highly-durable   application in solid-state zinc batteries[J]. Solid State Ionics, 2003,
                 aqueous zinc-ion batteries[J]. Journal of Power Sources, 2020, 463:   160(3/4): 289-300.
                 28209.                                        [52]  CHOU S L, CHENG F Y, CHEN J. Electrodeposition synthesis and
                                                         2+
                                                      4+
            [32]  ZENG X H, LIU J T, MAO J F, et al. Toward a reversible Mn /Mn    electrochemical  properties of nanostructured  γ-MnO 2 films[J].
                 redox reaction and dendrite-free Zn anode in  near-neutral aqueous   Journal of Power Sources, 2006, 162(1): 727-734.
                 Zn/MnO 2 batteries  via salt anion chemistry[J]. Advanced Energy   [53]  WANG C, ZENG Y X, XIAO X, et al. γ-MnO 2 nanorods/graphene
                 Materials, 2020, 10(32): 1904163.                 composite as efficient cathode for advanced rechargeable aqueous
            [33]  CHAO  D L, ZHOU W H,  YE  C,  et al.  An electrolytic Zn-MnO 2   zinc-ion battery[J]. Journal of Energy Chemistry, 2020, 43: 182-187.
                 battery for high-voltage and scalable energy storage[J]. Angewandte   [54]  SUN H J, CHEN H Y, SHU D, et al. Supercapacitive behavior and
                 Chemie International Edtion, 2019, 58(23): 7823-7828.     high cycle stability of todorokite-type manganese oxide with large
            [34]  LI Y, WANG S Y, SALVADOR J R, et al. Reaction mechanisms for   tunnels[J]. Journal of Power Sources, 2012, 203: 233-242.
                 long-life rechargeable Zn/MnO 2 batteries[J]. Chemistry of Materials,   [55]  ZHAO Y L, ZHU Y H, ZHANG X B. Challenges and perspectives
                 2019, 31(6): 2036-2047.                           for manganese-based oxides for  advanced aqueous zinc-ion
            [35]  HUANG J H, WANG Z, HOU M Y, et al. Polyaniline-intercalated   batteries[J]. Infomat, 2020, 2(2): 237-260.
                 manganese dioxide nanolayers  as  a high-performance  cathode   [56]  LEE J, JU J B, CHO W I, et al. Todorokite-type MnO 2 as a zinc-ion
                 material for an aqueous zinc-ion battery[J]. Nature Communications,   intercalating material[J]. Electrochimica Acta, 2013, 112: 138-143.
                 2018, 9(1): 2906.                             [57]  HE  Y J, PENG  J F, CHU W,  et al.  Retracted article: Black
            [36]  HAO J W, MOU J, ZHANG J W, et al. Electrochemically induced   mesoporous anatase TiO 2 nanoleaves: A high capacity and high rate
                 spinel-layered phase transition of Mn 3O 4 in high performance neutral   anode for aqueous Al-ion batteries[J]. Journal of Materials Chemistry
                 aqueous  rechargeable zinc battery[J]. Electrochimica Acta, 2018,   A, 2014, 2(6): 1721-1731.
                 259: 170-178.                                 [58]  WANG L L, CAO X, XU L H, et al. Transformed akhtenskite MnO 2
            [37]  ISLAM S, ALFARUQI M H, MATHEW V,  et al.  Facile synthesis   from Mn 3O 4 as cathode for rechargeable aqueous zinc-ion battery[J].
                 and the exploration of the zinc storage  mechanism of  β-MnO 2   ACS Sustainable  Chemistry & Engineering,  2018, 6(12):  16055-
                 nanorods with exposed (101) planes as a novel cathode material for   16063.
                 high performance eco-friendly zinc-ion batteries[J]. Journal of Materials   [59]  ALFARUQI M H, GIM J, KIM S, et al. A layered δ-MnO 2 nanoflake
                 Chemistry A, 2017, 5(44): 23299-23309.            cathode with high zinc-storage capacities for eco-friendly battery
            [38]  ZHANG N,  CHENG F Y, LIU J X,  et al.  Rechargeable aqueous   applications[J]. Electrochemistry Communications, 2015, 60: 121-125.
                 zinc-manganese dioxide batteries with high energy and power   [60]  KO J S, SASSIN M B, PARKER J F, et al. Combining battery-like
                 densities[J]. Nature Communications, 2017, 8(1): 405.     and pseudocapacitive charge storage in 3D MnO x@carbon electrode
            [39]  XIONG T, YU Z G, WU H J, et al. Defect engineering of oxygen-   architectures for zinc-ion cells[J]. Sustainable Energy & Fuels, 2018,
                 deficient manganese oxide to achieve high-performing aqueous zinc   2(3): 626-636.
                 ion battery[J]. Advanced Energy Materials, 2019, 9(14): 1803815.     [61]  YANG C Y, CHEN J, JI X, et al. Aqueous Li-ion battery enabled by
            [40]  PAN H L, SHAO Y  Y, YAN P F,  et al.  Reversible aqueous zinc/   halogen conversion-intercalation chemistry in graphite[J]. Nature,
                 manganese oxide energy storage from conversion reactions[J]. Nature   2019, 569(7755): 245-250.
                 Energy, 2016, 1(5): 1-7.                      [62]  YUAN C L, ZHANG  Y, PAN  Y,  et al.  Investigation of the
                                                                                            2+
                                                                                                2+
            [41]  QIU W D, LI Y,  YOU A,  et al.  High-performance flexible quasi-   intercalation of polyvalent cations (Mg , Zn ) into  λ-MnO 2 for
                 solid-state Zn-MnO 2 battery based on MnO 2 nanorod arrays coated   rechargeable aqueous battery[J]. Electrochimica Acta, 2014, 116:
                 3D porous nitrogen-doped carbon cloth[J]. Journal of Materials   404-412.
                 Chemistry A, 2017, 5(28): 14838-14846.        [63]  ZHANG N, CHENG F Y,  LIU Y C,  et al.  Cation-deficient spinel
            [42]  WU B K, ZHANG G B, YAN M  Y,  et al.  Graphene scroll-coated   ZnMn 2O 4 cathode in Zn(CF 3SO 3) 2 electrolyte for rechargeable
                 alpha-MnO 2  nanowires as high-performance  cathode materials for   aqueous Zn-ion battery[J]. Journal  of the American  Chemical
                 aqueous Zn-ion battery[J]. Small, 2018, 14(13): 1703850.     Society, 2016, 138(39): 12894-12901.
            [43]  GUO C,  TIAN S, CHEN  B L, et al.  Constructing  α-MnO 2@PPy   [64]  WEI C G, XU C J, LI B H, et al. Preparation and characterization of
                 core-shell nanorods towards enhancing electrochemical behaviors in   manganese dioxides with nano-sized tunnel structures for zinc ion
                 aqueous zinc ion battery[J]. Materials Letters, 2020, 262: 127180.     storage[J]. Journal of Physics and Chemistry of Solids, 2012, 73(12):
            [44]  ALFARUQI M H, GIM J, KIM S, et al. Enhanced reversible divalent   1487-1491.
   48   49   50   51   52   53   54   55   56   57   58