Page 139 - 《精细化工》2021年第4期
P. 139
第 4 期 周世昊,等: ZnMn 2 O 4 /Mn 2 O 3 /CNT 复合正极材料的制备及其在水锌离子电池中的应用 ·773·
时,其放电比容量分别为 126.2、124.4、115.4、94.2、 [12] MAGASINSKI A, DIXON P, HERTZBERG B, et al. High-performance
57.3 和 45.0 mAh/g,表现出较好的可逆放电比容量 lithium-ion anodes using a hierarchical bottom-up approach[J].
Nature Materials, 2010, 9(4): 353-358.
和优异的倍率性能。另一方面,在电池自放电过程
[13] FANG G Z, WU Z X, ZHOU J, et al. Observation of pseudocapacitive
中,静置 24 h 后,ZMO/MO/10CNT 为正极的电压仍 effect and fast ion diffusion in bimetallic sulfides as an advanced
有 1.5241 V,说明自放电速率较小。本文为低成本、 sodium-ion battery anode[J]. Advanced Energy Materials, 2018,
环境友好、高功率密度的大型储能装置开辟了一条 8(19): 1703155.
新的途径。 [14] FU Y Q, WEI Q L, ZHANG G X, et al. High-performance reversible
aqueous Zn-ion battery based on porous MnO x nanorods coated by
参考文献: MOF-derived N-doped carbon[J]. Advanced Energy Materials, 2018,
8(26): 1801445.
[1] DILLON A C. Carbon nanotubes for photoconversion and electrical
[15] LI Z X, HUANG Y, ZHANG J Y, et al. One-step synthesis of MnO x/PPy
energy storage[J]. Chemical Reviews, 2010, 110(11): 6856-6872.
nanocomposite as a high-performance cathode for a rechargeable
[2] NITTA N, WU F X, LEE J T, et al. Li-ion battery materials: Present
zinc-ion battery and insight into its energy storage mechanism[J].
and future[J]. Materials Today, 2015, 18(5): 252-264.
Nanoscale, 2020, 12(6): 4150-4158.
[3] TANG B Y, SHAN L T, LIANG S Q, et al. Issues and opportunities
[16] YANG S N, ZHANG M S, WU X W, et al. The excellent
facing aqueous zinc-ion batteries[J]. Energy & Environmental Science, electrochemical performances of ZnMn 2O 4/Mn 2O 3: The composite
2019, 12(11): 3288-3304.
cathode material for potential aqueous zinc ion batteries[J]. Journal
[4] JIANG B Z, XU C J, WU C L, et al. Manganese sesquioxide as of Electroanalytical Chemistry, 2019, 832: 69-74.
cathode material for multivalent zinc ion battery with high capacity [17] LI H F, HAN C Q, HUANG Y, et al. An extremely safe and wearable
and long cycle life[J]. Electrochimica Acta, 2017, 229: 422-428. solid-state zinc ion battery based on a hierarchical structured polymer
[5] KNIGHT J C, THERESE S, MANTHIRAM A. Chemical extraction electrolyte[J]. Energy and Environmental Science, 2018, 11(4): 941-951.
of Zn from ZnMn 2O 4-based spinels[J]. Journal of Materials Chemistry, [18] SUN W, WANG F, HOU S Y, et al. Zn/MnO 2 battery chemistry with
2015, 3(42): 21077-21082. H and Zn coinsertion[J]. Journal of the American Chemical
+
2+
[6] ZHANG N, CHENG F Y, LIU Y C, et al. Cation-deficient spinel Society, 2017, 139(29): 9775-9778.
ZnMn 2O 4 cathode in Zn(CF 3SO 3) 2 electrolyte for rechargeable [19] PAN H L, SHAO Y Y, YAN P F, et al. Reversible aqueous
aqueous Zn-ion battery[J]. Journal of the American Chemical Society, zinc/manganese oxide energy storage from conversion reactions[J].
2016, 138(39): 12894-12901. Nature Energy, 2016, 1(5): 16039.
[7] ZHANG H Z, WANG J, LIU Q Y, et al. Extracting oxygen anions [20] FAN X L, ZHU Y J, LUO C, et al. Pomegranate-structured
from ZnMn 2O 4: Robust cathode for flexible all-solid-state Zn-ion conversion-reaction cathode with a built-in Li source for high-energy
batteries[J]. Energy Storage Materials, 2019, 21: 154-161. Li-ion batteries[J]. ACS Nano, 2016, 10(5): 5567-5577.
[8] WU X W, XIANG Y H, PENG Q J, et al. Green-low-cost [21] WEI W F, CUI X W, CHEN W X, et al. Manganese oxide-based
rechargeable aqueous zinc-ion batteries using hollow porous spinel materials as electrochemical supercapacitor electrodes[J]. Chemical
ZnMn 2O 4 as the cathode material[J]. Journal of Materials Chemistry, Society Reviews, 2011, 40(3): 1697-1721.
2017, 5(34): 17990-17997. [22] AUGUSTYN V, SIMON P, DUNN B. Pseudocapacitive oxide
[9] YU X Y, LOU X W. Mixed metal sulfides for electrochemical energy materials for high-rate electrochemical energy storage[J]. Energy &
storage and conversion[J]. Advanced Energy Materials, 2018, 8(3): Environmental Science, 2014, 7(5):1597-1614.
1701592. [23] LESEL B K, KO J S, DUNN B, et al. Mesoporous Li xMn 2O 4 thin
[10] FANG G Z, WANG Q C, ZHOU J, et al. Metal organic framework- film cathodes for lithium-ion pseudocapacitors[J]. ACS Nano, 2016,
templated synthesis of bimetallic selenides with rich phase boundaries for 10(8): 7572-7581.
sodium-ion storage and oxygen evolution reaction[J]. ACS Nano, [24] CHAO D L, ZHU C R, YANG P H, et al. Array of nanosheets render
2019, 13(5): 5635-5645. ultrafast and high-capacity Na-ion storage by tunable pseudocapacitance[J].
[11] WU Q L, XU J G, YANG X F, et al. Ultrathin anatase TiO 2 Nat Commun, 2016, 7: 12122.
nanosheets embedded with TiO 2-B nanodomains for lithium-ion [25] WU X W, LI Y H, XIANG Y H, et al. The electrochemical
storage: Capacity enhancement by phase boundaries[J]. Advanced performance of aqueous rechargeable battery of Zn/Na 0.44MnO 2 based
Energy Materials, 2015, 5(7): 1401756. on hybrid electrolyte[J]. Journal of Power Sources, 2016, 336: 35-39.