Page 139 - 《精细化工》2021年第4期
P. 139

第 4 期         周世昊,等: ZnMn 2 O 4 /Mn 2 O 3 /CNT 复合正极材料的制备及其在水锌离子电池中的应用                    ·773·


            时,其放电比容量分别为 126.2、124.4、115.4、94.2、                [12]  MAGASINSKI A, DIXON P, HERTZBERG B, et al. High-performance
            57.3 和 45.0 mAh/g,表现出较好的可逆放电比容量                       lithium-ion anodes using a  hierarchical bottom-up approach[J].
                                                                   Nature Materials, 2010, 9(4): 353-358.
            和优异的倍率性能。另一方面,在电池自放电过程
                                                               [13]  FANG G Z, WU Z X, ZHOU J, et al. Observation of pseudocapacitive
            中,静置 24 h 后,ZMO/MO/10CNT 为正极的电压仍                       effect and fast ion diffusion in bimetallic sulfides as an advanced
            有 1.5241 V,说明自放电速率较小。本文为低成本、                           sodium-ion battery anode[J].  Advanced Energy Materials, 2018,
            环境友好、高功率密度的大型储能装置开辟了一条                                 8(19): 1703155.
            新的途径。                                              [14]  FU Y Q, WEI Q L, ZHANG G X, et al. High-performance reversible
                                                                   aqueous Zn-ion battery based on porous MnO x nanorods coated by
            参考文献:                                                  MOF-derived N-doped carbon[J]. Advanced Energy Materials, 2018,
                                                                   8(26): 1801445.
            [1]   DILLON A C. Carbon nanotubes for photoconversion and electrical
                                                               [15]  LI Z X, HUANG Y, ZHANG J Y, et al. One-step synthesis of MnO x/PPy
                 energy storage[J]. Chemical Reviews, 2010, 110(11): 6856-6872.
                                                                   nanocomposite as  a high-performance cathode for a rechargeable
            [2]   NITTA N, WU F X, LEE J T, et al. Li-ion battery materials: Present
                                                                   zinc-ion battery and insight into its energy storage  mechanism[J].
                 and future[J]. Materials Today, 2015, 18(5): 252-264.
                                                                   Nanoscale, 2020, 12(6): 4150-4158.
            [3]   TANG B Y, SHAN L T, LIANG S Q, et al. Issues and opportunities
                                                               [16]  YANG S N, ZHANG M S, WU  X W,  et al. The excellent
                 facing aqueous zinc-ion batteries[J]. Energy & Environmental Science,   electrochemical performances of ZnMn 2O 4/Mn 2O 3: The  composite
                 2019, 12(11): 3288-3304.
                                                                   cathode material for potential aqueous zinc ion batteries[J]. Journal
            [4]   JIANG B Z, XU  C J, WU C L,  et al. Manganese sesquioxide as   of Electroanalytical Chemistry, 2019, 832: 69-74.
                 cathode material for multivalent zinc ion battery with high capacity   [17]  LI H F, HAN C Q, HUANG Y, et al. An extremely safe and wearable
                 and long cycle life[J]. Electrochimica Acta, 2017, 229: 422-428.   solid-state zinc ion battery based on a hierarchical structured polymer
            [5]   KNIGHT J C, THERESE S, MANTHIRAM A. Chemical extraction   electrolyte[J]. Energy and Environmental Science, 2018, 11(4): 941-951.
                 of Zn from ZnMn 2O 4-based spinels[J]. Journal of Materials Chemistry,   [18]  SUN W, WANG F, HOU S Y, et al. Zn/MnO 2 battery chemistry with
                 2015, 3(42): 21077-21082.                         H  and Zn  coinsertion[J]. Journal of the American Chemical
                                                                    +
                                                                          2+
            [6]   ZHANG N, CHENG F Y,  LIU Y C, et  al. Cation-deficient spinel   Society, 2017, 139(29): 9775-9778.
                 ZnMn 2O 4 cathode in Zn(CF 3SO 3) 2 electrolyte for rechargeable   [19]  PAN H L, SHAO  Y  Y, YAN P F,  et al. Reversible aqueous
                 aqueous Zn-ion battery[J]. Journal of the American Chemical Society,   zinc/manganese oxide energy storage from conversion reactions[J].
                 2016, 138(39): 12894-12901.                       Nature Energy, 2016, 1(5): 16039.
            [7]   ZHANG H Z, WANG J, LIU Q Y, et al. Extracting oxygen anions   [20]  FAN X L, ZHU Y J, LUO C,  et al. Pomegranate-structured
                 from ZnMn 2O 4: Robust cathode for  flexible all-solid-state Zn-ion   conversion-reaction cathode with a built-in Li source for high-energy
                 batteries[J]. Energy Storage Materials, 2019, 21: 154-161.   Li-ion batteries[J]. ACS Nano, 2016, 10(5): 5567-5577.
            [8]   WU X W,  XIANG Y H, PENG  Q J,  et al. Green-low-cost   [21]  WEI W F, CUI X  W, CHEN W X,  et al. Manganese oxide-based
                 rechargeable aqueous zinc-ion batteries using hollow porous spinel   materials as electrochemical supercapacitor electrodes[J]. Chemical
                 ZnMn 2O 4 as the cathode material[J]. Journal of Materials Chemistry,   Society Reviews, 2011, 40(3): 1697-1721.
                 2017, 5(34): 17990-17997.                     [22]  AUGUSTYN V, SIMON  P,  DUNN B. Pseudocapacitive oxide
            [9]   YU X Y, LOU X W. Mixed metal sulfides for electrochemical energy   materials for high-rate electrochemical energy storage[J]. Energy &
                 storage and conversion[J]. Advanced Energy Materials, 2018, 8(3):   Environmental Science, 2014, 7(5):1597-1614.
                 1701592.                                      [23]  LESEL B K, KO J S, DUNN B, et al. Mesoporous Li xMn 2O 4 thin
            [10]  FANG G Z, WANG Q C, ZHOU J, et al. Metal organic framework-   film cathodes for lithium-ion pseudocapacitors[J]. ACS Nano, 2016,
                 templated synthesis of bimetallic selenides with rich phase boundaries for   10(8): 7572-7581.
                 sodium-ion storage and oxygen evolution reaction[J]. ACS Nano,   [24]  CHAO D L, ZHU C R, YANG P H, et al. Array of nanosheets render
                 2019, 13(5): 5635-5645.                           ultrafast and high-capacity Na-ion storage by tunable pseudocapacitance[J].
            [11]  WU Q L,  XU J  G,  YANG X F, et al. Ultrathin anatase  TiO 2   Nat Commun, 2016, 7: 12122.
                 nanosheets embedded with  TiO 2-B nanodomains for lithium-ion   [25]  WU X W, LI Y  H, XIANG  Y  H,  et al. The electrochemical
                 storage: Capacity enhancement by phase boundaries[J]. Advanced   performance of aqueous rechargeable battery of Zn/Na 0.44MnO 2 based
                 Energy Materials, 2015, 5(7): 1401756.            on hybrid electrolyte[J]. Journal of Power Sources, 2016, 336: 35-39.
   134   135   136   137   138   139   140   141   142   143   144