Page 93 - 《精细化工》2021年第4期
P. 93

第 4 期                   温   莎,等:  非贵金属催化 5-羟甲基糠醛选择氧化的研究进展                                ·727·


            4    结束语与展望                                            catalyst[J]. Molecular Catalysis, 2017, 439: 171-179.
                                                               [11]  RASS H A, ESSAYEM N, BESSON M. Selective aerobic oxidation
                                                                   of 5-HMF into 2, 5-furandicarboxylic acid with Pt catalysts
                 目前,HMF 通过催化氧化制备高附加值精细化                            supported on TiO 2- and ZrO 2-based supports[J].  ChemSusChem,
            学品是解决化石资源消耗带来的环境和能源问题的                                 2015, 8(7): 1206-1217.
                                                               [12]  ARTZ J, MALLMANN S, PALKOVITS R. Selective aerobic
            途径。由于非贵金属成本低、储量大以及环境友好                                 oxidation of HMF to 2, 5-diformylfuran on covalent triazine
            的特点,HMF 催化氧化中催化剂的研究重点从贵金                               frameworks-supported Ru catalysts[J]. ChemSusChem, 2015, 8(4):
                                                                   672-679.
            属向非贵金属转变。非贵金属催化剂的研究已经取
                                                               [13]  CHEN H,  WANG J  T,  YAO  Y,  et al. Cu-Ni bimetallic hydroxide
            得了阶段性的进展,通过制备方法来调控催化剂性                                 catalyst  for  efficient  electrochemical  conversion  of
            能的措施成果显著。基于上述讨论,未来可通过以                                 5-hydroxymethylfurfural  to  2,  5-furandicarboxylic  acid[J].
                                                                   ChemElectroChem, 2019, 6(35): 5797-5801.
            下途径优化 HMF 制备方法。                                    [14]  JAIN A, JONNALAGADDA S C, RAMANUJACHARY K V, et al.
                (1)虽然非贵金属催化剂在 HMF 催化氧化中                            Selective oxidation of 5-hydroxymethyl-2-furfural to furan-2,
                                                                   5-dicarboxylic acid over spinel mixed metal oxide catalyst[J].
            已经表现出较好的催化性能,但还存在一些不足,                                 Catalysis Communications, 2015, 58: 179-182.
            如:活性中心浸出,反应条件苛刻,催化剂制备困                             [15]  LIU B, ZHANG Z H, LV K L, et al. Efficient aerobic oxidation of
                                                                   biomass-derived 5-hydroxymethylfurfural to 2, 5-diformylfuran
            难等。因此,非贵金属催化剂在 HMF 催化氧化的研                              catalyzed by  magnetic nanoparticle supported manganese oxide[J].
            究还有待开发。                                                Applied Catalysis A: General, 2014, 472: 64-71.
                                                               [16]  AMARASEKARA A S, GREEN  D, MCMILLAN  E.  Efficient
                (2)鉴于 FDCA 的重要性,非贵金属催化剂在
                                                                   oxidation of 5-hydroxymethylfurfural to 2, 5-diformylfuran using
            催化氧化 HMF 到 FDCA 的研究可以进一步深入探索。                          Mn(Ⅲ)-salen catalysts[J]. Catalysis  Communications, 2008, 9(2):
                                                                   286-288.
                (3)HMF 的催化氧化是一个既有研究价值,又
                                                               [17]  QIN Y Z, LI Y M, ZONG M H, et al. Enzyme-catalyzed selective
            有巨大挑战的课题。HMF 的氧化正朝着经济、环保、                              oxidation of 5-hydroxymethylfurfural (HMF) and separation of HMF
            操作简单和高效稳定的方向发展。因此,未来研究                                 and 2,  5-diformylfuran  using deep eutectic solvents[J]. Green
                                                                   Chemistry, 2015, 17(7): 3718-3722.
            方向会朝着优化制备方法,使用绿色氧化剂前进。                             [18]  PAL P, SARAVANAMURUGAN S. Heterostructured manganese
                                                                   catalysts for the selective oxidation of 5-hydroxymethylfurfural to 2,
            参考文献:                                                  5-diformylfuran[J]. ChemCatChem, 2020, 12(8): 2324-2332.
                                                               [19]  KISSZEKELYI P,  HARDIAN R, VOVUSHA H,  et al. Selective
            [1]   WEN S, LIU K, TIAN Y, et al. Phosphorus-doped carbon supported   electrocatalytic  oxidation  of  biomass-derived
                 vanadium  phosphate  oxides  for  catalytic  oxidation  of  5-hydroxymethylfurfural (HMF) to 2, 5-diformylfuran (DFF): From
                 5-hydroxymethylfurfural to 2, 5-diformylfuran[J]. Processes, 2020,   mechanistic investigations to catalyst recovery[J]. ChemSusChem,
                 8(10): 1273.                                      2020, 13(12): 3127-3136.
            [2]   NIE J F, LIU H C. Aerobic oxidation of 5-hydroxymethylfurfural to   [20]  MENEZES P W, INDRA A, LITTLEWOOD P, et al. Nanostructured
                 2,5-diformylfuran on supported vanadium oxide catalysts: Structural   manganese oxides as highly active water oxidation catalysts: A boost
                 effect and reaction mechanism[J]. Pure and Applied Chemistry, 2011,   from manganese precursor chemistry[J]. ChemSusChem, 2014, 7(8):
                 84(3): 765-777.                                   2202-2211.
            [3]   ZHANG  M,  LIU Y Q, LIU B,  et  al. Trimetallic NiCoFe-layered   [21]  HAYASHI E, KOMANOYA T, KAMATA K, et al. Heterogeneously-
                 double hydroxides nanosheets efficient for oxygen evolution and   catalyzed  aerobic oxidation of 5-hydroxymethylfurfural to 2,
                 highly selective oxidation of biomass-derived 5-hydroxymethylfurfural[J].   5-furandicarboxylic acid with MnO 2[J]. ChemSusChem, 2017, 10(4):
                 ACS Catalysis, 2020, 10: 5179-5189.               654-658.
            [4]   LAI J H (赖金花), ZHOU S  L (周硕林), LIU K (刘凯),  et al.   [22]  NIE J F, LIU H C. Efficient aerobic oxidation  of
                 Selective oxidation of 5-methylfurfural to 2, 5-furanilic acid[J].   5-hydroxymethylfurfural to 2, 5-diformylfuran on manganese oxide
                 Speciality Petrochemicals (精细石油化工), 2019, 36(2): 65-72.     catalysts[J]. Journal of Catalysis, 2014, 316: 57-66.
            [5]   LAI J H,  LIU K, ZHOU S L,  et al. Selective oxidation of   [23]  KE Q P, JIN Y X, RUAN F, et al. Boosting the activity of catalytic
                 5-hydroxymethylfurfural into 2, 5-diformylfuran over VPO catalysts   oxidation of 5-hydroxymethylfurfural to 2, 5-diformylfuran over
                 under atmospheric pressure[J]. RSC Advances, 2019, 9: 14242-   nitrogen-doped manganese oxide catalysts[J]. Green Chemistry,
                 14246.                                            2019, 21(16): 4313-4318.
            [6]   XU J (徐杰), MA J P (马继平), MA H (马红). Progress  in   [24]  QI W, FANG J, YANG Z Z, et al. A low-cost and easily prepared
                 preparation and catalytic oxidation of 5-hydroxymethylfurfural[J].   manganese carbonate as an efficient catalyst for aerobic oxidation of
                 Petrochemical Technology (石油化工), 2012, 41(11): 1225-1233.     5-hydroxymethylfurfural to  2, 5-diformylfuran[J]. Transactions of
            [7]   BINDER J  B, RAINES R  T. Simple chemical transformation of   Tianjin University, 2018, 24(4): 301-307.
                 lignocellulosic biomass into furans  for fuels and chemicals[J].   [25]  SUN Y  X, MA H,  JIA X Q,  et al. A  high-performance base-metal
                 Journal of the American Chemical Society, 2009, 131(5): 1979-1985.     approach for the oxidative esterification of 5-hydroxymethylfurfural[J].
            [8]   LIMA S, NEVES P, ANTUNES M M, et al. Conversion of mono/   ChemCatChem, 2016, 8(18): 2907-2911.
                 di/polysaccharides into furan  compounds using 1-alkyl-3-   [26]  KARIMI B, MIRZAEI H M, FARHANGI E. Fe 3O 4@SiO 2-TEMPO
                 methylimidazolium ionic liquids[J]. Applied Catalysis A: General,   as a magnetically  recyclable catalyst for highly selective aerobic
                 2009, 363(1/2): 93-99.                            oxidation of 5-hydroxymethylfurfural into 2, 5-diformylfuran under
            [9]   ILGEN F, OTT D, KRALISCH D, et al. Conversion of carbohydrates   metal- and halogen-free conditions[J]. ChemCatChem, 2014, 6(3):
                 into 5-hydroxymethylfurfural in  highly concentrated low  melting   758-762.
                 mixtures[J]. Green Chemistry, 2009, 11(12): 1948-1954.     [27]  WANG S G, LIU B, YUAN Z L,  et al.  Aerobic oxidation of
            [10]  GAO T Q, GAO T Y, FANG W H, et al. Base-free aerobic oxidation   5-hydroxymethylfurfural into furan compounds over Mo-
                 of 5-hydroxymethylfurfural to 2, 5-furandicarboxylic acid in water   hydroxyapatite-encapsulated magnetic  γ-Fe 2O 3[J]. Journal of the
                 by hydrotalcite-activated carbon composite supported gold   Taiwan Institute of Chemical Engineers, 2016, 58: 92-96.
   88   89   90   91   92   93   94   95   96   97   98