Page 93 - 《精细化工》2021年第4期
P. 93
第 4 期 温 莎,等: 非贵金属催化 5-羟甲基糠醛选择氧化的研究进展 ·727·
4 结束语与展望 catalyst[J]. Molecular Catalysis, 2017, 439: 171-179.
[11] RASS H A, ESSAYEM N, BESSON M. Selective aerobic oxidation
of 5-HMF into 2, 5-furandicarboxylic acid with Pt catalysts
目前,HMF 通过催化氧化制备高附加值精细化 supported on TiO 2- and ZrO 2-based supports[J]. ChemSusChem,
学品是解决化石资源消耗带来的环境和能源问题的 2015, 8(7): 1206-1217.
[12] ARTZ J, MALLMANN S, PALKOVITS R. Selective aerobic
途径。由于非贵金属成本低、储量大以及环境友好 oxidation of HMF to 2, 5-diformylfuran on covalent triazine
的特点,HMF 催化氧化中催化剂的研究重点从贵金 frameworks-supported Ru catalysts[J]. ChemSusChem, 2015, 8(4):
672-679.
属向非贵金属转变。非贵金属催化剂的研究已经取
[13] CHEN H, WANG J T, YAO Y, et al. Cu-Ni bimetallic hydroxide
得了阶段性的进展,通过制备方法来调控催化剂性 catalyst for efficient electrochemical conversion of
能的措施成果显著。基于上述讨论,未来可通过以 5-hydroxymethylfurfural to 2, 5-furandicarboxylic acid[J].
ChemElectroChem, 2019, 6(35): 5797-5801.
下途径优化 HMF 制备方法。 [14] JAIN A, JONNALAGADDA S C, RAMANUJACHARY K V, et al.
(1)虽然非贵金属催化剂在 HMF 催化氧化中 Selective oxidation of 5-hydroxymethyl-2-furfural to furan-2,
5-dicarboxylic acid over spinel mixed metal oxide catalyst[J].
已经表现出较好的催化性能,但还存在一些不足, Catalysis Communications, 2015, 58: 179-182.
如:活性中心浸出,反应条件苛刻,催化剂制备困 [15] LIU B, ZHANG Z H, LV K L, et al. Efficient aerobic oxidation of
biomass-derived 5-hydroxymethylfurfural to 2, 5-diformylfuran
难等。因此,非贵金属催化剂在 HMF 催化氧化的研 catalyzed by magnetic nanoparticle supported manganese oxide[J].
究还有待开发。 Applied Catalysis A: General, 2014, 472: 64-71.
[16] AMARASEKARA A S, GREEN D, MCMILLAN E. Efficient
(2)鉴于 FDCA 的重要性,非贵金属催化剂在
oxidation of 5-hydroxymethylfurfural to 2, 5-diformylfuran using
催化氧化 HMF 到 FDCA 的研究可以进一步深入探索。 Mn(Ⅲ)-salen catalysts[J]. Catalysis Communications, 2008, 9(2):
286-288.
(3)HMF 的催化氧化是一个既有研究价值,又
[17] QIN Y Z, LI Y M, ZONG M H, et al. Enzyme-catalyzed selective
有巨大挑战的课题。HMF 的氧化正朝着经济、环保、 oxidation of 5-hydroxymethylfurfural (HMF) and separation of HMF
操作简单和高效稳定的方向发展。因此,未来研究 and 2, 5-diformylfuran using deep eutectic solvents[J]. Green
Chemistry, 2015, 17(7): 3718-3722.
方向会朝着优化制备方法,使用绿色氧化剂前进。 [18] PAL P, SARAVANAMURUGAN S. Heterostructured manganese
catalysts for the selective oxidation of 5-hydroxymethylfurfural to 2,
参考文献: 5-diformylfuran[J]. ChemCatChem, 2020, 12(8): 2324-2332.
[19] KISSZEKELYI P, HARDIAN R, VOVUSHA H, et al. Selective
[1] WEN S, LIU K, TIAN Y, et al. Phosphorus-doped carbon supported electrocatalytic oxidation of biomass-derived
vanadium phosphate oxides for catalytic oxidation of 5-hydroxymethylfurfural (HMF) to 2, 5-diformylfuran (DFF): From
5-hydroxymethylfurfural to 2, 5-diformylfuran[J]. Processes, 2020, mechanistic investigations to catalyst recovery[J]. ChemSusChem,
8(10): 1273. 2020, 13(12): 3127-3136.
[2] NIE J F, LIU H C. Aerobic oxidation of 5-hydroxymethylfurfural to [20] MENEZES P W, INDRA A, LITTLEWOOD P, et al. Nanostructured
2,5-diformylfuran on supported vanadium oxide catalysts: Structural manganese oxides as highly active water oxidation catalysts: A boost
effect and reaction mechanism[J]. Pure and Applied Chemistry, 2011, from manganese precursor chemistry[J]. ChemSusChem, 2014, 7(8):
84(3): 765-777. 2202-2211.
[3] ZHANG M, LIU Y Q, LIU B, et al. Trimetallic NiCoFe-layered [21] HAYASHI E, KOMANOYA T, KAMATA K, et al. Heterogeneously-
double hydroxides nanosheets efficient for oxygen evolution and catalyzed aerobic oxidation of 5-hydroxymethylfurfural to 2,
highly selective oxidation of biomass-derived 5-hydroxymethylfurfural[J]. 5-furandicarboxylic acid with MnO 2[J]. ChemSusChem, 2017, 10(4):
ACS Catalysis, 2020, 10: 5179-5189. 654-658.
[4] LAI J H (赖金花), ZHOU S L (周硕林), LIU K (刘凯), et al. [22] NIE J F, LIU H C. Efficient aerobic oxidation of
Selective oxidation of 5-methylfurfural to 2, 5-furanilic acid[J]. 5-hydroxymethylfurfural to 2, 5-diformylfuran on manganese oxide
Speciality Petrochemicals (精细石油化工), 2019, 36(2): 65-72. catalysts[J]. Journal of Catalysis, 2014, 316: 57-66.
[5] LAI J H, LIU K, ZHOU S L, et al. Selective oxidation of [23] KE Q P, JIN Y X, RUAN F, et al. Boosting the activity of catalytic
5-hydroxymethylfurfural into 2, 5-diformylfuran over VPO catalysts oxidation of 5-hydroxymethylfurfural to 2, 5-diformylfuran over
under atmospheric pressure[J]. RSC Advances, 2019, 9: 14242- nitrogen-doped manganese oxide catalysts[J]. Green Chemistry,
14246. 2019, 21(16): 4313-4318.
[6] XU J (徐杰), MA J P (马继平), MA H (马红). Progress in [24] QI W, FANG J, YANG Z Z, et al. A low-cost and easily prepared
preparation and catalytic oxidation of 5-hydroxymethylfurfural[J]. manganese carbonate as an efficient catalyst for aerobic oxidation of
Petrochemical Technology (石油化工), 2012, 41(11): 1225-1233. 5-hydroxymethylfurfural to 2, 5-diformylfuran[J]. Transactions of
[7] BINDER J B, RAINES R T. Simple chemical transformation of Tianjin University, 2018, 24(4): 301-307.
lignocellulosic biomass into furans for fuels and chemicals[J]. [25] SUN Y X, MA H, JIA X Q, et al. A high-performance base-metal
Journal of the American Chemical Society, 2009, 131(5): 1979-1985. approach for the oxidative esterification of 5-hydroxymethylfurfural[J].
[8] LIMA S, NEVES P, ANTUNES M M, et al. Conversion of mono/ ChemCatChem, 2016, 8(18): 2907-2911.
di/polysaccharides into furan compounds using 1-alkyl-3- [26] KARIMI B, MIRZAEI H M, FARHANGI E. Fe 3O 4@SiO 2-TEMPO
methylimidazolium ionic liquids[J]. Applied Catalysis A: General, as a magnetically recyclable catalyst for highly selective aerobic
2009, 363(1/2): 93-99. oxidation of 5-hydroxymethylfurfural into 2, 5-diformylfuran under
[9] ILGEN F, OTT D, KRALISCH D, et al. Conversion of carbohydrates metal- and halogen-free conditions[J]. ChemCatChem, 2014, 6(3):
into 5-hydroxymethylfurfural in highly concentrated low melting 758-762.
mixtures[J]. Green Chemistry, 2009, 11(12): 1948-1954. [27] WANG S G, LIU B, YUAN Z L, et al. Aerobic oxidation of
[10] GAO T Q, GAO T Y, FANG W H, et al. Base-free aerobic oxidation 5-hydroxymethylfurfural into furan compounds over Mo-
of 5-hydroxymethylfurfural to 2, 5-furandicarboxylic acid in water hydroxyapatite-encapsulated magnetic γ-Fe 2O 3[J]. Journal of the
by hydrotalcite-activated carbon composite supported gold Taiwan Institute of Chemical Engineers, 2016, 58: 92-96.