Page 175 - 《精细化工》2021年第5期
P. 175
第 5 期 王文涛,等: 还原性有机酸络合铁负载活性炭纤维降解染料废水 ·1029·
降解染料废水的 COD 去除率分别为 62.2%、56.8%、 2020, 55: 15695-15708.
[11] DUARTE F, MORAIS V, MALDONADO-HODAR F J, et al.
42.9%、39.9%和 38.5%,说明有机酸还原性越强,
Treatment of textile effluents by the heterogeneous Fenton process in
越有利于染料废水 COD 去除率的提高。 a continuous packed-bed reactor using Fe/activated carbon as
catalyst[J]. Chemical Engineering Journal, 2013, 232: 34-41.
参考文献: [12] BRILLAS E, GARCIA-SEGURA S. Benchmarking recent advances
and innovative technology approaches of Fenton, photo-Fenton,
[1] LU Y (陆玉). Research progress of dye wastewater treatment electro-Fenton, and related processes: A review on the relevance of
technology[J]. Textile Technology Progress (纺织科技进展), 2020, phenol as model molecule[J]. Separation and Purification Technology,
(5): 1-4. 2020, 237: 1-38.
[2] PAVITHRA K G, PONNUSAMY S K, VASUDEVAN J. Removal of [13] DI S W ( 邸胜卫 ). Determination of COD in wastewater by
colorants from wastewater: A review on sources and treatment potassium dichromate method[J]. Science & Technology Information
strategies[J]. Journal of Industrial and Engineering Chemistry, 2019, (科技资讯), 2017, 6: 133-134.
75: 1-19. [14] ALBERT O, JÁNOS K, IMRE K. XPS investigations on the
[3] ZHANG B Y (张斌阳), LI D Y (李东亚), XU H M (徐海明), et al. feasibility of isomorphous substitution of octahedral Al for Fe in
3+
3+
Degradation of printing and dyeing wastewater by synergistic Keggin ion salts[J]. Physical Chemistry Chemical Physics, 1999, 1:
activated NaClO-PMS or NaClO-O 3[J]. Fine Chemicals (精细化工), 2565-2568.
2019, 36(5): 979-983.
[4] HU P D, LONG M C. Cobalt-catalyzed sulfate radical-based advanced [15] GROSVENOR A P, KOBE B A, BIESINGER M C, et al.
Investigation of multiplet splitting of Fe 2p XPS spectra and bonding
oxidation: A review on heterogeneous catalysts and applications[J]. in iron compounds[J]. Surface and Interface Analysis, 2004, 36:
Applied Catalysis B Environmental, 2016, 181: 103-117.
1564-1574.
[5] GRZEGORZ B, ANDRÉ F. Wastewater treatment by means of [16] WANG X (王炫), LI H H (李焕焕), ZHANG Q (张乾), et al.
advanced oxidation processes at basic pH conditions: A review[J].
Chemical Engineering Journal, 2017, 320: 608-633. Research on opal-Fe 2O 3 as a heterogeneous Fenton catalyst for
[6] FENG X M (冯雪梅), WEI X L (卫新来), CHEN J (陈俊). Advances degrading the rhodamine B dye wastewater[J]. Chemical Industry
in application of advanced oxidation technology in wastewater and Engineering Progress (化工进展), 2017, 36(8): 3116-3124.
treatment[J]. Application of Chemical (应用化工), 2020, 49(4): [17] RODRIGUEZ A, OVEJERO G, SOTELO J L, et al. Heterogeneous
993-1001. Fenton catalyst supports screening for mono azo dye degradation in
[7] ZHANG J W (张建微). Comparison of degradation of synthetic dyes contaminated wastewaters[J]. Industrial & Engineering Chemistry
by homogeneous and multiphase Fenton oxidation[J]. Chemical Research, 2010, 49: 498-505.
Management (化工管理), 2016, (8): 265-266. [18] ZHANG M, XIAO C M, XIN Y, et al. Efficient removal of organic
[8] WANG Y, GAO Y W, CHEN L, et al. Goethite as an efficient pollutants by metal-organic framework derived Co/C yolk-shell
heterogeneous Fenton catalyst for the degradation of methyl nanoreactors: Size-exclusion and confinement effect[J]. Environmental
orange[J]. Catalysis Today, 2015, 252: 107-112. Science & Technology, 2020, 54(16): 10289-10300.
[9] RAMALHO M L A, MADEIRA V S, BRASILEIRO I L O, et al. [19] LUO X S, BAI L M, XING J J, et al. Ordered mesoporous cobalt
Synthesis of mixed oxide Ti/Fe 2O 3 as solar light-induced photocatalyst containing perovskite as a high-performance heterogeneous catalyst
for heterogeneous photo-Fenton like process[J]. Photochemistry & in activation of peroxymonosulfate[J]. Applied Materials & Interfaces,
Photobiology A: Chemistry, 2020, 404: 1-12. 2019, 11: 35720-35728.
[10] ZHANG F L, XUE X X, HUANG X W, et al. Adsorption and [20] ZHAO Y, AN H Z, FENG J, et al. Impact of crystal types of AgFeO 2
heterogeneous Fenton catalytic performance for magnetic Fe 3O 4/ nanoparticles on the peroxymonosulfate activation in the water[J].
reduced graphene oxide aerogel[J]. Journal of Materials Science, Environmental Science & Technology, 2019, 53: 4500-4510.
(上接第 972 页) Comparison of polyphenol content and antioxidant capacity of
[16] FU Y Z (付元真), WANG X X (王新新), WANG X (王晓), et al. strawberry fruit from 90 cultivars of Fragaria xananassa Duch.[J].
High-speed shear extraction of 11 active components of honeysuckle Food Chemistry, 2019, 270: 32-46.
and their antioxidant activities[J]. Food and Fermentation Industries [23] LYU P (吕平), PAN S Y (潘思轶). Synergistic antioxidant effect of
(食品与发酵工业), 2016, 42(5): 239-245. tangerine peel and Pu'er tea total flavonoids[J]. Food Research and
[17] ZHANG B, YANG R Y, ZHAO Y, et al. Separation of chlorogenic Development (食品研究与开发), 2020, 41(3): 59-64.
acid from honeysuckle crude extracts by macroporous resins[J]. [24] LI F (李帆), XING K H (邢珂慧), SHAO P L (邵佩兰), et al.
Journal of Chromatography B, 2008, 867(2): 253-258. Synergistic antioxidant effect of jujube pigment and jujube
[18] LUO F (罗帆), TANG F Z (唐风志), XU Y P (许艳萍), et al. Green polysaccharide[J]. Science and Technology of Food Industry (食品工
synthesis of ZnO nanoparticles using flavone from Ampelopsis 业科技), 2019, 40(9): 13-17, 23.
grossedentata and its antioxidan and antibacterial properties[J]. Fine [25] PENG Z M (彭祖茂), DENG M Y (邓梦雅), YAN Y Y (严虞虞),
Chemicals (精细化工), 2020, 37(9): 1793-1798, 1832. et al. Determination of anthocyanin content and species distribution
[19] XI G L (席高磊), XU K J (许克静), WANG H W (王宏伟), et al. in plants[J]. Food Research and Development (食品研究与开发),
Antioxidant properties of 4-methyl-7-hydroxycoumarin and derivative[J]. 2018, 39(17): 100-104.
Fine Chemicals (精细化工), 2019, 36(6): 1159-1165, 1184. [26] PEYRAT-MAILLARD M N, CUVELIER M E, BERSET C.
[20] BUJOR O C, GINIES C, POPA V I, et al. Phenolic compounds and Antioxidant activity of phenolic compounds in 2,2′-azobis
antioxidant activity of lingonberry (Vaccinium vitis-idaea L.) leaf, (2-amidinopropane) dihydrochloride (AAPH)-induced oxidation:
stem and fruit at different harvest periods[J]. Food Chemistry, 2018, Synergistic and antagonistic effects[J]. Journal of the American Oil
252: 356-365. Chemists Society, 2003, 80(10): 1007-1012.
[21] SHI Y B (石艳宾), BAO J T (鲍佳彤), WANG Y X (王亦萱), et al. [27] PAN J X (潘俊娴), LI X (李昕), CHEN S G (陈士国), et al.
The synergistic antioxidant effect of honeysuckle chlorogenic acid, Synergistic antioxidant activities of proanthocyanidins from Chinese
rutin and quercetin[J]. The Food Industry (食品工业), 2020, 41(5): bayberry (Myrica rubra Sieb. et Zucc.) leaves and BHT or TBHQ[J].
199-202. Journal of Chinese Institute of Food Science and Technology (中国
[22] NOWICKA A, KUCHARSKA A Z, SOKOL-LETOWSKA A, et al. 食品学报), 2017, 17(12): 65-71.