Page 175 - 《精细化工》2021年第5期
P. 175

第 5 期                  王文涛,等:  还原性有机酸络合铁负载活性炭纤维降解染料废水                                   ·1029·


            降解染料废水的 COD 去除率分别为 62.2%、56.8%、                        2020, 55: 15695-15708.
                                                               [11]  DUARTE F, MORAIS V, MALDONADO-HODAR F J,  et al.
            42.9%、39.9%和 38.5%,说明有机酸还原性越强,
                                                                   Treatment of textile effluents by the heterogeneous Fenton process in
            越有利于染料废水 COD 去除率的提高。                                   a continuous  packed-bed reactor  using  Fe/activated carbon as
                                                                   catalyst[J]. Chemical Engineering Journal, 2013, 232: 34-41.
            参考文献:                                              [12]  BRILLAS E, GARCIA-SEGURA S. Benchmarking recent advances
                                                                   and innovative technology approaches of Fenton, photo-Fenton,
            [1]   LU Y (陆玉). Research progress of dye wastewater  treatment   electro-Fenton, and related processes: A review on the relevance of
                 technology[J]. Textile Technology Progress (纺织科技进展), 2020,   phenol as model molecule[J]. Separation and Purification Technology,
                 (5): 1-4.                                         2020, 237: 1-38.
            [2]   PAVITHRA K G, PONNUSAMY S K, VASUDEVAN J. Removal of   [13]  DI S W ( 邸胜卫 ). Determination of COD in wastewater by
                 colorants from wastewater: A review on sources and treatment   potassium dichromate method[J]. Science & Technology Information
                 strategies[J]. Journal of Industrial and Engineering Chemistry, 2019,   (科技资讯), 2017, 6: 133-134.
                 75: 1-19.                                     [14]  ALBERT O, JÁNOS K, IMRE K. XPS investigations  on  the
            [3]  ZHANG B  Y  (张斌阳), LI D Y (李东亚), XU H M (徐海明), et al.   feasibility of isomorphous substitution of octahedral Al  for Fe  in
                                                                                                          3+
                                                                                                     3+
                 Degradation  of printing and dyeing wastewater by synergistic   Keggin ion salts[J]. Physical Chemistry Chemical Physics, 1999, 1:
                 activated NaClO-PMS or NaClO-O 3[J]. Fine Chemicals (精细化工),   2565-2568.
                 2019, 36(5): 979-983.
            [4]   HU P D, LONG M C. Cobalt-catalyzed sulfate radical-based advanced   [15]  GROSVENOR  A P, KOBE B A, BIESINGER M C,  et al.
                                                                   Investigation of multiplet splitting of Fe 2p XPS spectra and bonding
                 oxidation: A review on heterogeneous catalysts and applications[J].   in iron compounds[J]. Surface and Interface Analysis, 2004, 36:
                 Applied Catalysis B Environmental, 2016, 181: 103-117.
                                                                   1564-1574.
            [5]   GRZEGORZ B, ANDRÉ F. Wastewater treatment by  means of   [16]  WANG X (王炫), LI H H (李焕焕), ZHANG  Q (张乾),  et al.
                 advanced oxidation processes at basic pH conditions: A review[J].
                 Chemical Engineering Journal, 2017, 320: 608-633.     Research on opal-Fe 2O 3 as a heterogeneous  Fenton catalyst for
            [6]   FENG X M (冯雪梅), WEI X L (卫新来), CHEN J (陈俊). Advances   degrading the rhodamine B dye wastewater[J]. Chemical Industry
                 in application of  advanced oxidation technology in  wastewater   and Engineering Progress (化工进展), 2017, 36(8): 3116-3124.
                 treatment[J]. Application of Chemical (应用化工), 2020, 49(4):   [17]  RODRIGUEZ A, OVEJERO G, SOTELO J L, et al. Heterogeneous
                 993-1001.                                         Fenton catalyst supports screening for mono azo dye degradation in
            [7]   ZHANG J W (张建微). Comparison of degradation of synthetic dyes   contaminated wastewaters[J]. Industrial & Engineering  Chemistry
                 by homogeneous  and multiphase Fenton oxidation[J].  Chemical   Research, 2010, 49: 498-505.
                 Management (化工管理), 2016, (8): 265-266.        [18]  ZHANG M, XIAO C M, XIN Y, et al. Efficient removal of organic
            [8]   WANG Y, GAO  Y W, CHEN L,  et al. Goethite as an efficient   pollutants by metal-organic framework  derived Co/C yolk-shell
                 heterogeneous  Fenton catalyst for  the degradation  of methyl   nanoreactors: Size-exclusion and confinement effect[J]. Environmental
                 orange[J]. Catalysis Today, 2015, 252: 107-112.     Science & Technology, 2020, 54(16): 10289-10300.
            [9]   RAMALHO M L A, MADEIRA V S, BRASILEIRO I L O,  et al.   [19]  LUO X S, BAI L M, XING J J, et al. Ordered mesoporous cobalt
                 Synthesis of mixed oxide Ti/Fe 2O 3 as solar light-induced photocatalyst   containing perovskite as a high-performance heterogeneous catalyst
                 for heterogeneous  photo-Fenton like process[J]. Photochemistry &   in activation of peroxymonosulfate[J]. Applied Materials & Interfaces,
                 Photobiology A: Chemistry, 2020, 404: 1-12.       2019, 11: 35720-35728.
            [10]  ZHANG F  L, XUE X X,  HUANG  X  W,  et al. Adsorption and   [20]  ZHAO Y, AN H Z, FENG J, et al. Impact of crystal types of AgFeO 2
                 heterogeneous Fenton catalytic performance for  magnetic Fe 3O 4/   nanoparticles on the peroxymonosulfate  activation in the water[J].
                 reduced graphene oxide aerogel[J]. Journal of Materials Science,   Environmental Science & Technology, 2019, 53: 4500-4510.


            (上接第 972 页)                                            Comparison  of  polyphenol content  and antioxidant capacity of
            [16]  FU Y Z (付元真), WANG X X (王新新), WANG X (王晓), et al.   strawberry fruit from 90 cultivars of Fragaria xananassa Duch.[J].
                 High-speed shear extraction of 11 active components of honeysuckle   Food Chemistry, 2019, 270: 32-46.
                 and their antioxidant activities[J]. Food and Fermentation Industries   [23]  LYU P (吕平), PAN S Y (潘思轶). Synergistic antioxidant effect of
                 (食品与发酵工业), 2016, 42(5): 239-245.                  tangerine peel and Pu'er tea total flavonoids[J]. Food Research and
            [17]  ZHANG B, YANG R Y, ZHAO Y, et al. Separation of chlorogenic   Development (食品研究与开发), 2020, 41(3): 59-64.
                 acid from honeysuckle crude extracts by  macroporous  resins[J].   [24]  LI F (李帆), XING K H (邢珂慧), SHAO P  L (邵佩兰),  et al.
                 Journal of Chromatography B, 2008, 867(2): 253-258.   Synergistic antioxidant effect of jujube pigment and jujube
            [18]  LUO F (罗帆), TANG F Z (唐风志), XU Y P (许艳萍), et al. Green   polysaccharide[J]. Science and Technology of Food Industry (食品工
                 synthesis of ZnO nanoparticles using  flavone from  Ampelopsis   业科技), 2019, 40(9): 13-17, 23.
                 grossedentata and its antioxidan and antibacterial properties[J]. Fine   [25]  PENG Z M (彭祖茂), DENG M Y (邓梦雅), YAN Y Y (严虞虞),
                 Chemicals (精细化工), 2020, 37(9): 1793-1798, 1832.   et al. Determination of anthocyanin content and species distribution
            [19]  XI G L (席高磊), XU K J (许克静), WANG H W (王宏伟), et al.   in plants[J]. Food  Research and Development (食品研究与开发),
                 Antioxidant properties of 4-methyl-7-hydroxycoumarin and derivative[J].   2018, 39(17): 100-104.
                 Fine Chemicals (精细化工), 2019, 36(6): 1159-1165, 1184.   [26]  PEYRAT-MAILLARD M N, CUVELIER M  E,  BERSET C.
            [20]  BUJOR O C, GINIES C, POPA V I, et al. Phenolic compounds and   Antioxidant activity of phenolic compounds in 2,2′-azobis
                 antioxidant activity of lingonberry (Vaccinium vitis-idaea L.) leaf,   (2-amidinopropane) dihydrochloride  (AAPH)-induced oxidation:
                 stem and fruit at different harvest periods[J]. Food Chemistry, 2018,   Synergistic and antagonistic effects[J]. Journal of the American Oil
                 252: 356-365.                                     Chemists Society, 2003, 80(10): 1007-1012.
            [21]  SHI Y B (石艳宾), BAO J T (鲍佳彤), WANG Y X (王亦萱), et al.   [27]  PAN J X (潘俊娴), LI X (李昕), CHEN  S G  (陈士国), et al.
                 The synergistic antioxidant effect of honeysuckle chlorogenic acid,   Synergistic antioxidant activities of proanthocyanidins from Chinese
                 rutin and quercetin[J]. The Food Industry (食品工业), 2020, 41(5):   bayberry (Myrica rubra Sieb. et Zucc.) leaves and BHT or TBHQ[J].
                 199-202.                                          Journal of Chinese Institute of Food Science and Technology (中国
            [22]  NOWICKA A, KUCHARSKA A Z, SOKOL-LETOWSKA A, et al.   食品学报), 2017, 17(12): 65-71.
   170   171   172   173   174   175   176   177   178   179   180