Page 197 - 《精细化工》2021年第5期
P. 197

第 5 期                     安   文,等:  酪素基 rGO 复合乳液的制备及其阻燃性能                               ·1051·


            强度均在 6~10 MPa,说明含 rGO 的复合涂饰材料                      参考文献:
            有利于提升皮革的力学性能。这可能是由于随着                              [1]   YU G F (余国飞), DAN N  H (但年华), DAN W H (但卫华).
            rGO 含量的增加,复合材料中有机相与无机相之间                               Research progress of anti-flammability leather[J]. West Leather (西
                                                                   部皮革), 2018, 40(5): 60-62, 65.
            形成良好的界面作用,使得组分间的相容性较好,                             [2]   LI H X (李红霞). Development of high powered halogen free flame
            充分地发挥了 rGO 的增强增韧效果,从而提升了皮                              retardant polyolefin composites[D]. Beijing: Beijing University of
            革的力学性能,增加了皮革的实用性                  [34] 。               Chemical Technology (北京化工大学), 2007.
                                                               [3]   YANG J G (杨健根). An eco-friendly leather coating material[J].
                                                                   China Leather (中国皮革), 2018, 47(10): 36-40.
                                                               [4]   MOHAMED O,  ABDEL-MOHDY  F A. Preparation of flame-
                                                                   retardant leather pretreated with pyrovatex CP[J]. Journal of Applied
                                                                   Polymer Science, 2006, 99(5): 2039-2043.
                                                               [5]   LI B,  LI J X, LI  L X,  et al. Synthesis and application  of a novel
                                                                   functional material as leather flame retardant[J]. Journal of the
                                                                   American Leather Chemists Association, 2014, 109(7): 239-245.
                                                               [6]   WANG Q Y (王琦研), DUAN B R (段宝荣), DUAN X N (段小宁),
                                                                   et al. Research progress of leather flame retardant technology[J].
                                                                   Leather Science and Enginging (皮革科学和工程学), 2020, 30(3):
                                                                   28-34.
                                                               [7]   JIANG Y, LI J,  LI B,  et al. Study on a novel multifunctional
                                                                   nanocomposite as flame retardant of leather[J]. Polymer Degradation
                                                                   and Stability, 2015, 115: 110-116.
                     图 10   涂饰后革样的物理力学性能                       [8]   HAN Y, WU Y,  SHEN M,  et al.  Preparation and properties  of
            Fig. 10    Physical and  mechanical properties of  finished   polystyrene nanocomposites with  graphite oxide and  graphene as
                    leathers samples                               flame retardants[J]. Journal of Materials Science, 2013, 48(12):
                                                                   4214-4222.
            2.2.6   耐干湿擦性能测试                                   [9]   CAO Y C (曹宇臣), GUO M M (郭鸣明). Graphene materials and its
                                                                   applications[J]. Petrochemical Technology (石油化工), 2016, 45(10):
                 表 3 为不同 rGO 含量下复合乳液涂饰后革样的                         1149-1159.
            耐干摩擦和耐湿摩擦性能测试结果。                                   [10]  POUR R H, SOHEILMOGHADDAM M, HASSAN A,  et al.
                                                                   Flammability  and  thermal  properties  of  polycarbonate
                                                                   acrylonitrile-butadiene-styrene nanocomposites reinforced with
                      表 3   涂饰后革样的耐干湿擦性能                           multilayer graphene[J]. Polymer Degradation and  Stability, 2015,
            Table 3    Resistance to dry and wet rubbing of finished   120(65): 88-97.
                    leather samples                            [11]  HUANG  G, GAO J, XU W,  et al. How can graphene reduce the
              rGO 含量/%     0    0.1  0.2   0.3   0.4  0.5          flammability of polymer nanocomposites[J]. Materials Letters, 2012,
                                                                   66(1): 187-189.
              耐干擦性/级       5    5     5     5    5     5
                                                               [12]  BAI Y X (拜永孝), ZHANG Y J (张玉金). The invention relates to a
              耐湿擦性/级       4   3~4   3~4   3~4  3~4   3~4          preparation method of a combustible polymer material: 110358141A[P].
                                                                   2019-10-22.
                 由表 3 可知,不同 rGO 含量下复合乳液涂饰后                     [13]  LIU Y (刘杨), LUO H H (罗海航), YOU T (游涛), et al. Application
                                                                   of functional materials in leather finishing[J]. Leather and Chemicals
            革样的耐干擦性级别均为 5 级,说明引入 rGO 的复                            (皮革与化工), 2019, 36(2): 32-36.
            合乳液涂饰后革样具有较好的耐干擦性能。但不同                             [14]  SHEN X Q (申晓庆), LAN  Y J (兰云军),  XU X H  (许晓红).
            rGO 含量下复合乳液涂饰后革样的耐湿擦性级别均                               Technology on modification of casein and properties of productions
                                                                   [J]. West Leather (西部皮革), 2009, 31: 30-33.
            为 3~4 级,表明引入 rGO 后,对皮革的耐干湿擦性                       [15]  TANG Y (唐瑶), FU K (付柯), ZHAO D (赵丹), et al. Modification
            能均未产生显著影响。                                             of casein and its application in leather finishing[J]. West Leather (西
                                                                   部皮革), 2015, 37(10): 25-28.
            3   结论                                             [16]  HAMED E, RASHA A, OLA M, et al. Preparation of polyurethane
                                                                   silicon oxide nanomaterials as a binder in leather finishing[J]. Fibers
                                                                   and Polymers, 2018, 19(4): 832-842.
                (1)成功制备了酪素基 rGO 复合乳液,rGO 的                     [17]  XU Q N ( 徐群娜 ). Synthesis, structure and performance of
            引入可使皮革的阻燃性能增强。                                         casein-based emulsifier-free composite  emulsion with core-shell
                                                                   structure[D]. Xi'an: Shaanxi University of Science & Technology (陕
                (2)当 rGO 含量为酪素体系溶质质量的 0.5%                         西科技大学), 2013.
            时,涂饰后革样的燃烧速率与未含 rGO 的皮革相比                          [18]  ZHANG F, MA J Z, XU Q N, et al. Hollow casein-based polymeric
            降低了 47.2%;同时,HRR 和 THR 均有所下降,明                         nanospheres for  opaque coatings[J]. ACS Appl Mater Interfaces,
                                                                   2016: 11739-11748.
            显提高了皮革的阻燃性能。                                       [19]  XU Q N, MA J Z, ZHOU J H,  et al. Bio-based core-shell
                (3)在引入 rGO 后,皮革的力学性能和耐干湿擦                          casein-based silica nano-composite latex by double  in situ
                                                                   polymerization: Synthesis, characterization and mechanism[J]. Chemical
            性能均未产生显著影响,有望提升皮革的附加值。因
                                                                   Engineering Journal, 2013, 228(28): 281-289.
            此,该研究为后期开发阻燃型涂层材料提供了新思路。                           [20]  WANG  Y N, MA  J Z, XU Q  N,  et al. Fabrication of antibacterial
   192   193   194   195   196   197   198   199   200   201   202