Page 226 - 《精细化工》2021年第5期
P. 226

·1080·                            精细化工   FINE CHEMICALS                                 第 38 卷

            的 1000 倍,通过快速换热,反应生产的热点被消除,                        参考文献:
            有效地提高了原料的转化率与产品的选择性,而且                             [1]   NOTARI B. Titanium silicalite: A new selective oxidation catalyst,
            大大缩短了停留时间,反应区持液量仅为釜式的                                  structure-activity and selectivity relationship in heterogenous
                                                                   catalysis[J]. Stud Surf Sci Catal, 1990, 60: 243-252.
            1/1000,且体系封闭,放大效应微弱,副反应少,
                                                               [2]   GAO L Y (高丽雅), TAN X J (檀学军), ZHANG D S (张东升), et al.
            通过过程强化、精确控温以及减少反应区持液量,                                 Research progress in synthesis and application of hydroxylamine[J].
            实现了产品的连续、安全、高效、稳定生产,产品                                 Chemical Industry and Engineering  Progress (化工进展), 2012,
            纯度和品质显著提高。                                             31(9): 2043-2048.
                                                               [3]   HE J Q (何建琴). Synthesis and catalytic performance of titanium

                                                                   silicalite[D]. Shanghai: East China Normal University (华东师范大
                    表 2   连续流反应与间歇反应工艺对比                           学), 2013.
            Table 2    Comparison of reaction effect between continuous   [4]   LIANG X H, MI Z T, WANG Y Q, et al. Synthesis of acetone oxime
                    flow and batch reaction                        through acetone ammoximation over TS-1[J]. React Kinet Catal Lett,
                 传热和传质指标          微通道反应器  夹套式搅拌釜        [15]       2004, 82(2): 333-337.
                               3
                             2
             单位体积换热面积/(m /m )        2500        2.5~10        [5]   XING W  H,  LI  Z H, CHEN R Z,  et al. Catalytic  mechanism and
                                                                   reaction pathway of acetone ammoximation to acetone oxime over
                            3
             总换热系数/〔kW/(m ·K)〕       1700         1~10
                                                                   TS-1[J]. Korean J Chem Eng, 2010, 27(5): 1423-1427.
             安全性(反应持液量)/L              4          4000         [6]   BU Z (卜真), LI Z H (李朝辉), XING W H (邢卫红),  et al.
             n(氨水)∶n(双氧水)∶n(叔      3.0∶1.1∶     3.0∶1.2∶           Optimization of ammoxidation conditions of acetone catalyzed by
             丁醇)∶n(丙酮)              6.0∶1.0   (6.0~10.0)∶1.0       titanium silicon-1 molecular sieve[J]. Journal of Nanjing University
                                                                   of Technology (Natural Science Edition) (南京工业大学学报:  自然
             催化剂用量/g                   8          40~64
                                                                   科学版), 2009, 31(4): 74-78.
             助催化剂用量/mg                 3          15~24
                                                               [7]   XU B L (徐必亮). Study on ammoximation of acetone over titanium
             反应温度/℃                   100          90              silicalite[D]. Shanghai: East China Normal University (华东师范大
             停留时间/min                 1.2          90              学), 2012.
             产品收率/%                   77.0        51.0         [8]   WU P, KOMATSU T, YASHIMA T. Ammoximation of ketones over
                                                                   titanium mordenite[J]. Journal of Catalysis, 1997, 168(2): 400-411.

                                                               [9]   LI H, LEI Q, ZHANG X M. Synthesis, characterization, and catalytic
            3   结论                                                 performance of bifunctional  titanium silicalite-1[J]. Journal  of
                                                                   Catalysis, 2013, 34(7): 1363-1372.
                (1)液相条件下,以丙酮、氨水和双氧水为原                          [10]  PANYABURAPA W, NANOK T, LIMTRAKUL J. Epoxidation
            料, TS-1 为催化剂,溴化钠为助催化剂,叔丁醇                              reaction of unsaturated hydrocarbons  with H 2O 2 over defect  TS-1
                                                                   investigated by ONIOM  method: Formation of active sites and
            为溶剂,在具有特殊微结构的 AFR 中一步氧化合成
                                                                   reaction mechanisms[J].   The Journal of Physical Chemistry C,
            了丙酮肟。                                                  2007, 111(8): 3433-3441.
                (2)在 AFR 微通道反应器出口压力 500 kPa、                   [11]  LI Z H (李朝辉), XING W H (邢卫红), XU N P (徐南平),  et al.
                                                                   Intrinsic kinetics of TS-1 catalytic ammoxidation  of acetone to
            反应温度 100  ℃、催化剂用量 8 g、n(氨水)∶n(双
                                                                   acetone oxime[J].  Journal of Chemical Engineering  of Chinese
            氧水)∶n(叔丁醇)∶n(丙酮)=3.0∶1.1∶6.0∶1.0、双                     Universities (高校化学工程学报), 2009, 23(3): 423-427.
            氧水质量分数 70%、氨水质量分数 25%、助催化剂                         [12]  LUO  G S (骆广生),  WANG K (王凯),  LYU Y C (吕阳成). Latest
            用量 3 mg、停留时间 72 s 的条件下,丙酮转化率为                          progress in microreactor research[J]. Modern Chemical Industry (现
                                                                   代化工), 2009, 29(5): 27-31.
            75.7%、丙酮肟选择性为 96.8%、丙酮肟收率为                         [13]  BONINO F, DAMIN A, RICCHIARDI G, et al. Ti-peroxo species in
            73.5%。                                                 the TS-1/H 2O 2/H 2O system[J]. The Journal of Physical Chemistry B,
                (3)AFR 具有持液量小、停留时间短、强传质                            2004, 108(11): 3573-3583.
                                                               [14]  LI Z H, CHEN  R Z, XING W  H,  et al. Continuous acetone
            传热作用的特点,强化了反应物料和催化体系之间                                 ammoximation over TS-1 in a tubular membrane reactor[J]. Industrial
            的协同催化效应,提高了氨肟化反应速率,有效地                                 & Engineering Chemistry Research, 2010, 49(14): 6309-6316.
            解决了由于双氧水分解带来的丙酮氨肟化反应本                              [15]  LI  Y X (李钰欣), YAN S H (严生虎), ZHANG  Y (张跃),  et al.
                                                                   Continuous flow synthesis process of glyoxylic acid by oxidation of
            质安全性问题,实现了丙酮氨肟化的绿色安全高效
                                                                   glyoxal with  hydrogen  peroxide[J]. Fine Chemicals (精细化工),
            合成。                                                    2019, 36(7): 1483-1487.
   221   222   223   224   225   226   227   228   229   230   231