Page 226 - 《精细化工》2021年第5期
P. 226
·1080· 精细化工 FINE CHEMICALS 第 38 卷
的 1000 倍,通过快速换热,反应生产的热点被消除, 参考文献:
有效地提高了原料的转化率与产品的选择性,而且 [1] NOTARI B. Titanium silicalite: A new selective oxidation catalyst,
大大缩短了停留时间,反应区持液量仅为釜式的 structure-activity and selectivity relationship in heterogenous
catalysis[J]. Stud Surf Sci Catal, 1990, 60: 243-252.
1/1000,且体系封闭,放大效应微弱,副反应少,
[2] GAO L Y (高丽雅), TAN X J (檀学军), ZHANG D S (张东升), et al.
通过过程强化、精确控温以及减少反应区持液量, Research progress in synthesis and application of hydroxylamine[J].
实现了产品的连续、安全、高效、稳定生产,产品 Chemical Industry and Engineering Progress (化工进展), 2012,
纯度和品质显著提高。 31(9): 2043-2048.
[3] HE J Q (何建琴). Synthesis and catalytic performance of titanium
silicalite[D]. Shanghai: East China Normal University (华东师范大
表 2 连续流反应与间歇反应工艺对比 学), 2013.
Table 2 Comparison of reaction effect between continuous [4] LIANG X H, MI Z T, WANG Y Q, et al. Synthesis of acetone oxime
flow and batch reaction through acetone ammoximation over TS-1[J]. React Kinet Catal Lett,
传热和传质指标 微通道反应器 夹套式搅拌釜 [15] 2004, 82(2): 333-337.
3
2
单位体积换热面积/(m /m ) 2500 2.5~10 [5] XING W H, LI Z H, CHEN R Z, et al. Catalytic mechanism and
reaction pathway of acetone ammoximation to acetone oxime over
3
总换热系数/〔kW/(m ·K)〕 1700 1~10
TS-1[J]. Korean J Chem Eng, 2010, 27(5): 1423-1427.
安全性(反应持液量)/L 4 4000 [6] BU Z (卜真), LI Z H (李朝辉), XING W H (邢卫红), et al.
n(氨水)∶n(双氧水)∶n(叔 3.0∶1.1∶ 3.0∶1.2∶ Optimization of ammoxidation conditions of acetone catalyzed by
丁醇)∶n(丙酮) 6.0∶1.0 (6.0~10.0)∶1.0 titanium silicon-1 molecular sieve[J]. Journal of Nanjing University
of Technology (Natural Science Edition) (南京工业大学学报: 自然
催化剂用量/g 8 40~64
科学版), 2009, 31(4): 74-78.
助催化剂用量/mg 3 15~24
[7] XU B L (徐必亮). Study on ammoximation of acetone over titanium
反应温度/℃ 100 90 silicalite[D]. Shanghai: East China Normal University (华东师范大
停留时间/min 1.2 90 学), 2012.
产品收率/% 77.0 51.0 [8] WU P, KOMATSU T, YASHIMA T. Ammoximation of ketones over
titanium mordenite[J]. Journal of Catalysis, 1997, 168(2): 400-411.
[9] LI H, LEI Q, ZHANG X M. Synthesis, characterization, and catalytic
3 结论 performance of bifunctional titanium silicalite-1[J]. Journal of
Catalysis, 2013, 34(7): 1363-1372.
(1)液相条件下,以丙酮、氨水和双氧水为原 [10] PANYABURAPA W, NANOK T, LIMTRAKUL J. Epoxidation
料, TS-1 为催化剂,溴化钠为助催化剂,叔丁醇 reaction of unsaturated hydrocarbons with H 2O 2 over defect TS-1
investigated by ONIOM method: Formation of active sites and
为溶剂,在具有特殊微结构的 AFR 中一步氧化合成
reaction mechanisms[J]. The Journal of Physical Chemistry C,
了丙酮肟。 2007, 111(8): 3433-3441.
(2)在 AFR 微通道反应器出口压力 500 kPa、 [11] LI Z H (李朝辉), XING W H (邢卫红), XU N P (徐南平), et al.
Intrinsic kinetics of TS-1 catalytic ammoxidation of acetone to
反应温度 100 ℃、催化剂用量 8 g、n(氨水)∶n(双
acetone oxime[J]. Journal of Chemical Engineering of Chinese
氧水)∶n(叔丁醇)∶n(丙酮)=3.0∶1.1∶6.0∶1.0、双 Universities (高校化学工程学报), 2009, 23(3): 423-427.
氧水质量分数 70%、氨水质量分数 25%、助催化剂 [12] LUO G S (骆广生), WANG K (王凯), LYU Y C (吕阳成). Latest
用量 3 mg、停留时间 72 s 的条件下,丙酮转化率为 progress in microreactor research[J]. Modern Chemical Industry (现
代化工), 2009, 29(5): 27-31.
75.7%、丙酮肟选择性为 96.8%、丙酮肟收率为 [13] BONINO F, DAMIN A, RICCHIARDI G, et al. Ti-peroxo species in
73.5%。 the TS-1/H 2O 2/H 2O system[J]. The Journal of Physical Chemistry B,
(3)AFR 具有持液量小、停留时间短、强传质 2004, 108(11): 3573-3583.
[14] LI Z H, CHEN R Z, XING W H, et al. Continuous acetone
传热作用的特点,强化了反应物料和催化体系之间 ammoximation over TS-1 in a tubular membrane reactor[J]. Industrial
的协同催化效应,提高了氨肟化反应速率,有效地 & Engineering Chemistry Research, 2010, 49(14): 6309-6316.
解决了由于双氧水分解带来的丙酮氨肟化反应本 [15] LI Y X (李钰欣), YAN S H (严生虎), ZHANG Y (张跃), et al.
Continuous flow synthesis process of glyoxylic acid by oxidation of
质安全性问题,实现了丙酮氨肟化的绿色安全高效
glyoxal with hydrogen peroxide[J]. Fine Chemicals (精细化工),
合成。 2019, 36(7): 1483-1487.