Page 136 - 《精细化工》2021年第6期
P. 136

·1198·                            精细化工   FINE CHEMICALS                                 第 38 卷

            参考文献:                                                  chemistry[J]. Chem Rev, 2018, 118(2): 801-838.
                                                               [13]  JAKUB Z, ANNE M, TEOFIL J, et al. A general overview of support
            [1]   LIU Z Y (刘仲毅). Plasticizer green catalytic technology[M]. Beijing:   materials for enzyme immobilization: Characteristics,  properties,
                 Science Press (科学出版社), 2018: 3-11.                practical utility[J]. Catalysts, 2018, 8(2): 92-119.
            [2]   RYBACHUK G V, KOZLOVA I I, MOZZHUKHIN V B, et al. PVC   [14]  YI J, GERT O R, ALBERT J J, et al. A biocatalytic approach towards
                 Plastisols: Preparation, properties, and application[J]. Polymer Science,   sustainable furanic–aliphatic polyesters[J]. Polymer Chemistry, 2015,
                 2007, 49(1): 6-12.                                6(29): 5198-5211.
            [3]   ZOLLER A, MARCILLA A. Soft PVC foams: Study of the gelation,   [15]  LIU Y J (刘延杰), CHEN W W (陈弯弯), XIANG B Y (向碧云), et al.
                 fusion and foaming processes.  Ⅲ. Mixed phthalate ester plasticizers   Analysis of key points  of  silica gel column chromatography  for
                 [J]. Journal of Applied Polymer Science, 2012, 124(4): 2691-2701.   separation of natural products[J]. Biological Bulletin (生物学通报),
            [4]   YUE Y Y, LIU J M, LIU R, et al. The binding affinity of phthalate   2018, 53(6): 44-46.
                 plasticizers-protein revealed by spectroscopic techniques and molecular   [16]  OZYILMAZ G. The effect of spacer arm on hydrolytic and synthetic
                 modeling[J]. Food & Chemical Toxicology, 2014, 71(1): 244-253.   activity of Candida rugosa lipase immobilized on silica gel[J]. Journal
            [5]   FEDERICA C, MARCELLA F, ANDREA M, et al. Perspectives on   of Molecular Catalysis B: Enzymatic, 2009, 56(4): 231-236.
                 alternatives to  phthalate plasticized poly(vinyl chloride) in medical   [17]  GUO Z (郭诤). Study on esterification catalyzed by lipase in nonaqueous
                 devices applications[J]. Progress in Polymer Science, 2013, 38(7):   phase system[D]. Tianjin: Tianjin University (天津大学), 2003.
                 1067-1088.                                    [18]  PELLIS A, BYRNE F P, SHERWOOD J, et al. Safer bio-based solvents
            [6]   LIU Y P, WANG S H, WANG L. Development of rapid determination   to replace toluene and tetrahydrofuran for the biocatalyzed synthesis
                 of 18 phthalate esters in edible vegetable oils by gas chromatography   of polyesters[J]. Green Chemistry, 2019, 21(7): 1686-1694.
                 tandem mass spectrometry[J]. Journal of Agricultural & Food Chemistry,   [19]  JIN W B (靳文斌), LI K W (李克文), XU J  B (胥九兵),  et al.
                 2013, 61(6): 1160-1164.                           Characteristics, functions and applications of trehalose[J]. Fine and
            [7]   GUO Y M (郭永梅). Toxicity of phthalates and related restrictions[J].   Specialty Chemicals (精细与专用化学品), 2015, 23(1): 30-33.
                 Guangzhou Chemical (广州化学), 2012, 37(2): 75-79.   [20]  LOTTI M, PLEISS J,  VALERO F,  et al. Effects of  methanol on
            [8]   YU Z L (余作龙). Preparation, polymerization and ester plasticization   lipases: Molecular,  kinetic and process issues in the  production of
                 of 2, 5-furanedioic acid for PVC[D]. Nanjing: Nanjing Tech University   biodiesel[J]. Biotechnology Journal, 2015, 10(1): 22-30.
                 (南京工业大学), 2013.                               [21]  WANG  C R (王春蓉). Study on performance  and application of
            [9]   CUI Y  L (崔燕莉). Synthesis  of isooctyl 2,5-furan diformate as  a   zeolite  molecular sieve[J].  Chemistry and Adhesion (化学与黏合),
                 biological plasticizer[D]. Nanjing: Nanjing Tech University (南京工  2010, 32(4): 76-78.
                 业大学), 2016.                                   [22]  LIU X H (刘喜宏). A brief discussion on the prospect and process
            [10]  LIU Z C (刘志春). Synthesis and application of bioplasticizer 2,5-   flow of methanol from coal[J]. China Petroleum and Chemical Standard
                 n-butyl furan diformate[D]. Ningbo: Ningbo University (宁波大学),   and Quality (中国石油和化工标准与质量), 2013, 33(10): 20-22.
                 2018.                                         [23]  YANG J C (杨基础), DONG S (董燊), YANG X M (杨小民). The
            [11] DENG  R  (邓茹), CUI L Y (崔莉燕), WU H  L(武红丽),  et al.   protective effect of trehalose on immobilized enzyme[J]. CIESC
                 Synthesis of bio-plasticizer di-(2-ethylhexyl) furan-2,5-dicarboxylate   Journal (化工学报), 2000, 51(2): 193-197.
                 with low colority[J]. China Plastics  Industry (塑料工业), 2018,   [24]  JIANG Z H, YU M, REN L W, et al. Synthesis of phytosterol esters
                 46(1): 119-125.                                   catalyzed by immobilized lipase in organic media[J]. Chinese Journal
            [12]  SHELDON R A, WOODLEY J M. Role of biocatalysis in sustainable   of Catalysis, 2013, 34(12): 2255-2262.

            (上接第 1176 页)                                           nitrogen-doped chitosan-derived carbon nanosheets with hierarchically
                                                                   porous structure for enhanced sulfacetamide degradation  via
                                                                   peroxymonosulfate activation: Maneuverable porosity and active
            参考文献:                                                  sites[J]. Chemical Engineering Journal, 2020, 382: 122908.
            [1]   SOUSA S C A, BERNARDO J R, WOLFF M, et al. Oxo-rhenium   [12]  ELSAID N, JACKSON T L, ELSAID Z, et al. PLGA microparticles
                 (Ⅴ) complexes  containing heterocyclic ligands as catalysts for the   entrapping chitosan-based nanoparticles for  the ocular  delivery of
                 reduction of sulfoxides[J]. European Journal of Organic Chemistry,   ranibizumab[J]. Molecular Pharmaceutics, 2016, 13(9): 2923-2940.
                 2014, 2014(9): 1855-1859.                     [13]  JUNTAPRAM K,  PRAPHAIRAKSIT N, SIRALEARTMUKU K,
            [2]   KOMINARNI H, NAKANISHI K, YAMAMOTO S, et al. Photocatalytic   et al. Synthesis and characterization of chitosan-homocysteine
                 deoxygenation of sulfoxides to sulfides over titanium (Ⅳ) oxide at   thiolactone as a  mucoadhesive polymer[J]. Carbohydrate Polymers,
                 room temperature  without use of metal co-catalysts[J].  Catalysis   2012, 87(4): 2399-2408.
                 Communications, 2014, 54: 100-103.            [14]  SUN X, OLIVOS-SUAREZ A I, OAR-ARTETA L, et al. Metal-organic
            [3]   MA R, LIU A H, HUANG C B, et al. Reduction of sulfoxides and   framework mediated cobalt/nitrogen-doped carbon  hybrids as efficient
                 pyridine-N-oxides over iron powder with water as hydrogen source   and chemoselective catalysts for the hydrogenation of nitroarenes[J].
                 promoted by carbon dioxide[J]. Green Chemistry, 2013, 15(5): 1274-1279.     ChemCatChem, 2017, 9(10): 1854-1862.
            [4]   HARRISON D J,  TAM N C,  VOGELS C M,  et al. A gentle and   [15]  WANG X, ZHENG C, WU Z M, et al. Chitosan-NAC nanoparticles
                 efficient route for the deoxygenation of sulfoxides using catecholborane   as a vehicle for nasal absorption enhancement of insulin[J]. Journal
                 (HBcat; cat = 1,2-O 2C 6H 4)[J]. Tetrahedron Letters, 2004, 45(46):   of Biomedical Materials Research Part B-Applied Biomaterials,
                 8493-8496.                                        2009, 88B(1): 150-161.
            [5]   SOUSA S C A, CARRASCO C J, PINTO M F, et al. A manganese   [16]  THORUM M S, HANKETT J M, GEWIRTH A  A. Poisoning  the
                 N-heterocyclic carbene catalyst for  reduction of sulfoxides with   oxygen reduction reaction on carbon-supported Fe and Cu
                 silanes[J]. ChemCatChem, 2019, 11(16): 3839-3843.     electrocatalysts: Evidence for metal-centered activity[J]. Journal of
            [6]   GARCIA N, GARCIA-GARCIA P, FERNANDEZ-RODRIGUEZ M   Physical Chemistry Letters, 2011, 2(4): 295-298.
                 A, et al. An unprecedented use for glycerol: Chemoselective reducing   [17]  LI G Q, YANG H H, ZHANG H F, et al. Encapsulation of nonprecious
                 agent for sulfoxides[J]. Green Chemistry, 2013, 15: 999-1005.     metal into ordered mesoporous N-doped carbon  for efficient
            [7]   LONG J L, SHEN K, LI Y W. Bifunctional N-doped Co@C catalysts   quinoline transfer hydrogenation with formic acid[J]. ACS Catalysis,
                 for base-free transfer hydrogenations of nitriles: Controllable selectivity   2018, 8(9): 8396-8405.
                 to primary amines vs imines[J]. ACS Catalysis, 2016, 7(1): 275-284.   [18]  ZHANG C H, ZHAO P S, ZHANG Z L, et al. Co—N—C supported
            [8]   CHEN F, SURKUS A E, HE L, et al. Selective catalytic hydrogenation   on SiO 2: A facile, efficient catalyst for aerobic oxidation of amines to
                 of heteroarenes with N-graphene-modified cobalt nanoparticles   imines[J]. RSC Adv, 2017, 7(75): 47366-47372.
                 (Co 3O 4-Co/NGr@alpha-Al 2O 3)[J]. J Am Chem Soc, 2015, 137(36):   [19]  JIANG H, LIU  Y  S, HAO J Y,  et al. Self-assembly synthesis of
                 11718-11724.                                      cobalt and nitrogen co-embedded trumpet flower-like porous carbons
            [9]   CHEN F, KREVENSCHULTE C, RADNIK J,  et al. Selective   for catalytic oxygen reduction in alkaline and acidic media[J]. ACS
                 semihydrogenation of alkynes with N-graphitic-modified cobalt   Sustainable Chemistry & Engineering, 2017, 5(6): 5341-5350.
                 nanoparticles supported on silica[J]. ACS Catalysis, 2017, 7(3):   [20]  CUI X L, LIANG K, TIAN M, et al. Cobalt nanoparticles supported on
                 1526-1532.                                        N-doped mesoporous carbon as a highly efficient catalyst for the synthesis
            [10]  SU H, ZHANG K X, ZHANG B, et al. Activating cobalt nanoparticles   of aromatic amines[J]. J Colloid Interface Sci, 2017, 501: 231-240.
                 via the mott-schottky effect in  nitrogen-rich carbon  shells  for   [21]  ZHANG F W,  ZHAO C, CHEN S,  et al.  In situ  mosaic strategy
                 base-free aerobic oxidation of alcohols to esters[J]. J Am Chem Soc,   generated Co-based N-doped mesoporous carbon for highly selective
                 2017, 139(2): 811-818.                            hydrogenation of nitroaromatics[J]. Journal of Catalysis, 2017, 348:
            [11]  CHEN X,  OH W  D, ZHANG P H,  et al. Surface construction of   212-222.
   131   132   133   134   135   136   137   138   139   140   141