Page 136 - 《精细化工》2021年第6期
P. 136
·1198· 精细化工 FINE CHEMICALS 第 38 卷
参考文献: chemistry[J]. Chem Rev, 2018, 118(2): 801-838.
[13] JAKUB Z, ANNE M, TEOFIL J, et al. A general overview of support
[1] LIU Z Y (刘仲毅). Plasticizer green catalytic technology[M]. Beijing: materials for enzyme immobilization: Characteristics, properties,
Science Press (科学出版社), 2018: 3-11. practical utility[J]. Catalysts, 2018, 8(2): 92-119.
[2] RYBACHUK G V, KOZLOVA I I, MOZZHUKHIN V B, et al. PVC [14] YI J, GERT O R, ALBERT J J, et al. A biocatalytic approach towards
Plastisols: Preparation, properties, and application[J]. Polymer Science, sustainable furanic–aliphatic polyesters[J]. Polymer Chemistry, 2015,
2007, 49(1): 6-12. 6(29): 5198-5211.
[3] ZOLLER A, MARCILLA A. Soft PVC foams: Study of the gelation, [15] LIU Y J (刘延杰), CHEN W W (陈弯弯), XIANG B Y (向碧云), et al.
fusion and foaming processes. Ⅲ. Mixed phthalate ester plasticizers Analysis of key points of silica gel column chromatography for
[J]. Journal of Applied Polymer Science, 2012, 124(4): 2691-2701. separation of natural products[J]. Biological Bulletin (生物学通报),
[4] YUE Y Y, LIU J M, LIU R, et al. The binding affinity of phthalate 2018, 53(6): 44-46.
plasticizers-protein revealed by spectroscopic techniques and molecular [16] OZYILMAZ G. The effect of spacer arm on hydrolytic and synthetic
modeling[J]. Food & Chemical Toxicology, 2014, 71(1): 244-253. activity of Candida rugosa lipase immobilized on silica gel[J]. Journal
[5] FEDERICA C, MARCELLA F, ANDREA M, et al. Perspectives on of Molecular Catalysis B: Enzymatic, 2009, 56(4): 231-236.
alternatives to phthalate plasticized poly(vinyl chloride) in medical [17] GUO Z (郭诤). Study on esterification catalyzed by lipase in nonaqueous
devices applications[J]. Progress in Polymer Science, 2013, 38(7): phase system[D]. Tianjin: Tianjin University (天津大学), 2003.
1067-1088. [18] PELLIS A, BYRNE F P, SHERWOOD J, et al. Safer bio-based solvents
[6] LIU Y P, WANG S H, WANG L. Development of rapid determination to replace toluene and tetrahydrofuran for the biocatalyzed synthesis
of 18 phthalate esters in edible vegetable oils by gas chromatography of polyesters[J]. Green Chemistry, 2019, 21(7): 1686-1694.
tandem mass spectrometry[J]. Journal of Agricultural & Food Chemistry, [19] JIN W B (靳文斌), LI K W (李克文), XU J B (胥九兵), et al.
2013, 61(6): 1160-1164. Characteristics, functions and applications of trehalose[J]. Fine and
[7] GUO Y M (郭永梅). Toxicity of phthalates and related restrictions[J]. Specialty Chemicals (精细与专用化学品), 2015, 23(1): 30-33.
Guangzhou Chemical (广州化学), 2012, 37(2): 75-79. [20] LOTTI M, PLEISS J, VALERO F, et al. Effects of methanol on
[8] YU Z L (余作龙). Preparation, polymerization and ester plasticization lipases: Molecular, kinetic and process issues in the production of
of 2, 5-furanedioic acid for PVC[D]. Nanjing: Nanjing Tech University biodiesel[J]. Biotechnology Journal, 2015, 10(1): 22-30.
(南京工业大学), 2013. [21] WANG C R (王春蓉). Study on performance and application of
[9] CUI Y L (崔燕莉). Synthesis of isooctyl 2,5-furan diformate as a zeolite molecular sieve[J]. Chemistry and Adhesion (化学与黏合),
biological plasticizer[D]. Nanjing: Nanjing Tech University (南京工 2010, 32(4): 76-78.
业大学), 2016. [22] LIU X H (刘喜宏). A brief discussion on the prospect and process
[10] LIU Z C (刘志春). Synthesis and application of bioplasticizer 2,5- flow of methanol from coal[J]. China Petroleum and Chemical Standard
n-butyl furan diformate[D]. Ningbo: Ningbo University (宁波大学), and Quality (中国石油和化工标准与质量), 2013, 33(10): 20-22.
2018. [23] YANG J C (杨基础), DONG S (董燊), YANG X M (杨小民). The
[11] DENG R (邓茹), CUI L Y (崔莉燕), WU H L(武红丽), et al. protective effect of trehalose on immobilized enzyme[J]. CIESC
Synthesis of bio-plasticizer di-(2-ethylhexyl) furan-2,5-dicarboxylate Journal (化工学报), 2000, 51(2): 193-197.
with low colority[J]. China Plastics Industry (塑料工业), 2018, [24] JIANG Z H, YU M, REN L W, et al. Synthesis of phytosterol esters
46(1): 119-125. catalyzed by immobilized lipase in organic media[J]. Chinese Journal
[12] SHELDON R A, WOODLEY J M. Role of biocatalysis in sustainable of Catalysis, 2013, 34(12): 2255-2262.
(上接第 1176 页) nitrogen-doped chitosan-derived carbon nanosheets with hierarchically
porous structure for enhanced sulfacetamide degradation via
peroxymonosulfate activation: Maneuverable porosity and active
参考文献: sites[J]. Chemical Engineering Journal, 2020, 382: 122908.
[1] SOUSA S C A, BERNARDO J R, WOLFF M, et al. Oxo-rhenium [12] ELSAID N, JACKSON T L, ELSAID Z, et al. PLGA microparticles
(Ⅴ) complexes containing heterocyclic ligands as catalysts for the entrapping chitosan-based nanoparticles for the ocular delivery of
reduction of sulfoxides[J]. European Journal of Organic Chemistry, ranibizumab[J]. Molecular Pharmaceutics, 2016, 13(9): 2923-2940.
2014, 2014(9): 1855-1859. [13] JUNTAPRAM K, PRAPHAIRAKSIT N, SIRALEARTMUKU K,
[2] KOMINARNI H, NAKANISHI K, YAMAMOTO S, et al. Photocatalytic et al. Synthesis and characterization of chitosan-homocysteine
deoxygenation of sulfoxides to sulfides over titanium (Ⅳ) oxide at thiolactone as a mucoadhesive polymer[J]. Carbohydrate Polymers,
room temperature without use of metal co-catalysts[J]. Catalysis 2012, 87(4): 2399-2408.
Communications, 2014, 54: 100-103. [14] SUN X, OLIVOS-SUAREZ A I, OAR-ARTETA L, et al. Metal-organic
[3] MA R, LIU A H, HUANG C B, et al. Reduction of sulfoxides and framework mediated cobalt/nitrogen-doped carbon hybrids as efficient
pyridine-N-oxides over iron powder with water as hydrogen source and chemoselective catalysts for the hydrogenation of nitroarenes[J].
promoted by carbon dioxide[J]. Green Chemistry, 2013, 15(5): 1274-1279. ChemCatChem, 2017, 9(10): 1854-1862.
[4] HARRISON D J, TAM N C, VOGELS C M, et al. A gentle and [15] WANG X, ZHENG C, WU Z M, et al. Chitosan-NAC nanoparticles
efficient route for the deoxygenation of sulfoxides using catecholborane as a vehicle for nasal absorption enhancement of insulin[J]. Journal
(HBcat; cat = 1,2-O 2C 6H 4)[J]. Tetrahedron Letters, 2004, 45(46): of Biomedical Materials Research Part B-Applied Biomaterials,
8493-8496. 2009, 88B(1): 150-161.
[5] SOUSA S C A, CARRASCO C J, PINTO M F, et al. A manganese [16] THORUM M S, HANKETT J M, GEWIRTH A A. Poisoning the
N-heterocyclic carbene catalyst for reduction of sulfoxides with oxygen reduction reaction on carbon-supported Fe and Cu
silanes[J]. ChemCatChem, 2019, 11(16): 3839-3843. electrocatalysts: Evidence for metal-centered activity[J]. Journal of
[6] GARCIA N, GARCIA-GARCIA P, FERNANDEZ-RODRIGUEZ M Physical Chemistry Letters, 2011, 2(4): 295-298.
A, et al. An unprecedented use for glycerol: Chemoselective reducing [17] LI G Q, YANG H H, ZHANG H F, et al. Encapsulation of nonprecious
agent for sulfoxides[J]. Green Chemistry, 2013, 15: 999-1005. metal into ordered mesoporous N-doped carbon for efficient
[7] LONG J L, SHEN K, LI Y W. Bifunctional N-doped Co@C catalysts quinoline transfer hydrogenation with formic acid[J]. ACS Catalysis,
for base-free transfer hydrogenations of nitriles: Controllable selectivity 2018, 8(9): 8396-8405.
to primary amines vs imines[J]. ACS Catalysis, 2016, 7(1): 275-284. [18] ZHANG C H, ZHAO P S, ZHANG Z L, et al. Co—N—C supported
[8] CHEN F, SURKUS A E, HE L, et al. Selective catalytic hydrogenation on SiO 2: A facile, efficient catalyst for aerobic oxidation of amines to
of heteroarenes with N-graphene-modified cobalt nanoparticles imines[J]. RSC Adv, 2017, 7(75): 47366-47372.
(Co 3O 4-Co/NGr@alpha-Al 2O 3)[J]. J Am Chem Soc, 2015, 137(36): [19] JIANG H, LIU Y S, HAO J Y, et al. Self-assembly synthesis of
11718-11724. cobalt and nitrogen co-embedded trumpet flower-like porous carbons
[9] CHEN F, KREVENSCHULTE C, RADNIK J, et al. Selective for catalytic oxygen reduction in alkaline and acidic media[J]. ACS
semihydrogenation of alkynes with N-graphitic-modified cobalt Sustainable Chemistry & Engineering, 2017, 5(6): 5341-5350.
nanoparticles supported on silica[J]. ACS Catalysis, 2017, 7(3): [20] CUI X L, LIANG K, TIAN M, et al. Cobalt nanoparticles supported on
1526-1532. N-doped mesoporous carbon as a highly efficient catalyst for the synthesis
[10] SU H, ZHANG K X, ZHANG B, et al. Activating cobalt nanoparticles of aromatic amines[J]. J Colloid Interface Sci, 2017, 501: 231-240.
via the mott-schottky effect in nitrogen-rich carbon shells for [21] ZHANG F W, ZHAO C, CHEN S, et al. In situ mosaic strategy
base-free aerobic oxidation of alcohols to esters[J]. J Am Chem Soc, generated Co-based N-doped mesoporous carbon for highly selective
2017, 139(2): 811-818. hydrogenation of nitroaromatics[J]. Journal of Catalysis, 2017, 348:
[11] CHEN X, OH W D, ZHANG P H, et al. Surface construction of 212-222.