Page 194 - 《精细化工》2021年第6期
P. 194
·1256· 精细化工 FINE CHEMICALS 第 38 卷
and application of heavy oil viscosity reduction technology at home [20] WANG N (王宁), CHEN X Y (陈翔宇), XIA S Q (夏淑倩). Research
and abroad[J]. Oilfield Chemistry (油田化学), 2020, 37(3): 557-563. progress of oil-soluble polymers in viscosity reduction of heavy
[4] HEIN F J. Geology of bitumen and heavy oil: An overview[J]. oil[J]. Fine Chemicals (精细化工), 2021, 38(5): 882-888.
Journal of Petroleum Science and Engineering, 2017, 154: 551-563. [21] GUO J X (郭继香), YANG Y Q (杨矞琦), ZHANG J W (张江伟),
[5] SHAO W L (邵文丽), ZHANG N (张娜). Viscosity reducing agents et al. Research and application of composite viscosity reducer SDG-3
of heavy oil[J]. Speciality Petrochemicals (精细石油化工), 2020, aimed at ultra-heavy oil[J]. Fine Chemicals (精细化工), 2017, 34(3):
37(4): 79-84. 341-348.
[6] FRANCO C A, LOZANO M M, ACEVEDO S, et al. Effects of resin [22] LI Q J (李清江), YANG Y (杨莹), JIANG L (蒋莉), et al. Analysis
Ⅰon asphaltene adsorption onto nanoparticles: A novel method for of preparation and dispersion characterization of surface modified
obtaining asphaltenes/resin isotherms[J]. Energy & Fuels, 2016, nano-silica particles[J]. Experimental Technology and Management
30(1): 264-272. (实验技术与管理) , 2019, 36(10): 159-162.
[7] PEREIRA J C, CARRASQUERO E, BECERRIT L, et al. Study of [23] WANG X B (王小波). The microscopic mechanism research of
resin adsorption onto asphaltene and silica-asphaltene particles[J]. cellulose insulating paper modified by nano-SiO 2 surface-modified
Petroleum Science and Technology, 2009, 27(9): 874-881. via silane coupling agent[D]. Chongqing: Southwest University (西
[8] TORRES A, AMAYA SUAREZ J, REMESAL E R, et al. Adsorption 南大学), 2019.
of prototypical asphaltenes on silica: First-principles DFT [24] QUE Y S (阙永生), YANG H (杨辉), WANG H F (汪海风), et al.
simulations including dispersion corrections[J]. Journal of Physical Preparation and in situ modification of nano-SiO 2 by sol-gel
Chemistry B, 2018, 122(2): 618-624. method[J]. Inorganic Chemicals Industry (无机盐工业), 2015, 47(9):
[9] MONTES D, HENAO J, TABORDA E A, et al. Effect of textural 13-17.
properties and surface chemical nature of silica nanoparticles from [25] SU R C (苏瑞彩), LI W F (李文芳), PENG J H (彭继华), et al.
different silicon sources on the viscosity reduction of heavy crude Surface modification of nano-sized SiO 2 with silane coupling agent
oil[J]. ACS Omega 2020, 5: 5085-5097. and its dispersion[J]. Chemical Industry and Engineering Progress
[10] TABORDA E A, ALVARADO V, FRANCO C A, et al. Rheological (化工进展), 2009, 28(9): 1596-1599.
demonstration of alteration in the heavy crude oil fluid structure upon [26] LI W, XU Y H, ZHOU Y, et al. Silica nanoparticles functionalized via
addition of nanoparticles[J]. Fuel, 2017, 189: 322-333. click chemistry and ATRP for enrichment of Pb(Ⅱ) ion[J]. Nanoscale
[11] JU B S, FAN T L, MA M X. Enhanced oil recovery by flooding with Research Letters, 2012, 7(1): 1-7.
hydrophilic nanoparticles[J]. China Particuology, 2006, 4(1): 41-46. [27] LEON O, ROGEL E, ESPIDEL J, et al. Asphaltenes: Structural
[12] TABORDA E A, FRANCO C A, RUIZ M A, et al. Experimental and characterization, self-association, and stability behavior[J]. Energy &
theoretical study of viscosity reduction in heavy crude oils by addition Fuels, 2000, 14(1): 6-10.
of nanoparticles[J]. Energy & Fuels, 2017, 31(2): 1329-1338. [28] GRAY M R, TYKWINSKI R R, STRYKER J M, et al. Supramolecular
[13] ZARGARTALEBI M, KHARRAT R, BARATI N. Enhancement of assembly model for aggregation of petroleum asphaltenes[J]. Energy
surfactant flooding performance by the use of silica nanoparticles[J]. & Fuels, 2011, 25(7): 3125-3134.
Fuel, 2015, 143: 21-27. [29] ALVAREZ-RAMIREZ F, RAMIREZ-JARAMILLO E, RUIZ-
[14] JING G L, SUN Z N, TU Z Y, et al. Influence of different vinyl MORALES Y. Calculation of the interaction potential curve between
acetate contents on the properties of the copolymer of ethylene and asphaltene-asphaltene, asphaltene-resin, and resin-resin systems
vinyl acetate/modified nano-SiO 2 composite pour-point depressant[J]. using density functional theory[J]. Energy & Fuels, 2006, 20(1):
Energy & Fuels, 2017, 31(6): 5854-5859. 195-204.
[15] ZHANG H M (张宏民). Study on synthesis and properties of nano- [30] CUI Q (崔青), ZHANG C Q (张长桥), XIU J X (修建新), et al.
composite viscosity reducer in heavy oil[D]. Jinan: Shangdong Molecular dynamic simulation on the mechanism molecular dynamic
University (山东大学), 2015. simulation on the mechanism[J]. Journal of Shandong University
[16] XIN G D (辛国栋). Synthesis and research of viscosity reducer for (Engineering Science) ( 山东大学学 报 : 工学 版 ), 2017, 47(2):
heavy oil nanocomposites[D]. Jinan: Shangdong University (山东大 123-130.
学), 2016. [31] WANG Q X (王秋霞), WANG H Y (王弘宇), ZHANG H (张华),
[17] WANG Y P (王艳萍), SUN F Y (孙风跃), LIANG X Y (梁心怡), et al. Synthesis and performance evaluation of oil-soluble heavy oil
et al. Structure design and structure-function relationship of emulsified viscosity reducer containing pyridyl groups[J]. Science & Technology
viscosity reducers with temperature resistance and salt tolerance[J]. in Chemical Industry (化工科技), 2020, 28(4): 47-52.
Fine Chemicals (精细化工), 2020, 37(4): 826-833. [32] QING Y Q, YANG M J, LI L, et al. Effect of organically modified
[18] YANG S Y (杨思妍), CHEN F (陈馥), ZHOU H (周慧), et al. Study nanosilica on the viscosity and rheological behavior of karamay
on synthesis of oil-base tetramer MASM viscosity reducer for the heavy crude oil[J]. Energy & Fuels, 2020, 34(1): 65-73.
viscous crude oil[J]. Applied Chemical Industry (应用化工), 2011, [33] ESMAEELZADEH M, MORTEZAEI M, POULADVAND A.
40(2): 299-302. Interaction of viscosity and curing kinetics of epoxy resin in the
[19] CHEN X K (陈小凯). Preparation and laboratory evaluation of presence of nanosilica particles[C]//The 11th International Chemical
copolymer of oil-soluble viscosity reducer SA/MMA/VTEO[J]. Engineering Congress & Exhibition (IChEC 2020) Fouman, Iran,
Chemical Engineer (化学工程师), 2016, 30(7): 37-40. 2020.