Page 194 - 《精细化工》2021年第6期
P. 194

·1256·                            精细化工   FINE CHEMICALS                                 第 38 卷

                 and application of heavy oil viscosity reduction technology at home   [20]  WANG N (王宁), CHEN X Y (陈翔宇), XIA S Q (夏淑倩). Research
                 and abroad[J]. Oilfield Chemistry (油田化学), 2020, 37(3): 557-563.   progress  of  oil-soluble polymers in viscosity reduction of heavy
            [4]   HEIN F J. Geology of bitumen and heavy oil: An overview[J].   oil[J]. Fine Chemicals (精细化工), 2021, 38(5): 882-888.
                 Journal of Petroleum Science and Engineering, 2017, 154: 551-563.   [21]  GUO J X (郭继香), YANG Y Q (杨矞琦), ZHANG J W (张江伟),
            [5]   SHAO W L (邵文丽), ZHANG N (张娜). Viscosity reducing agents   et al. Research and application of composite viscosity reducer SDG-3
                 of heavy oil[J]. Speciality Petrochemicals (精细石油化工), 2020,   aimed at ultra-heavy oil[J]. Fine Chemicals (精细化工), 2017, 34(3):
                 37(4): 79-84.                                     341-348.
            [6]   FRANCO C A, LOZANO M M, ACEVEDO S, et al. Effects of resin   [22]  LI Q J (李清江), YANG Y (杨莹), JIANG L (蒋莉), et al. Analysis
                 Ⅰon asphaltene adsorption onto nanoparticles: A novel method for   of preparation and dispersion characterization of  surface modified
                 obtaining asphaltenes/resin isotherms[J]. Energy & Fuels, 2016,   nano-silica particles[J]. Experimental Technology and Management
                 30(1): 264-272.                                   (实验技术与管理) , 2019, 36(10): 159-162.
            [7]   PEREIRA J C, CARRASQUERO E, BECERRIT L, et al. Study of   [23]  WANG X B (王小波). The microscopic mechanism research of
                 resin adsorption onto asphaltene and silica-asphaltene particles[J].   cellulose insulating paper modified  by nano-SiO 2 surface-modified
                 Petroleum Science and Technology, 2009, 27(9): 874-881.   via silane coupling agent[D]. Chongqing: Southwest University (西
            [8]   TORRES A, AMAYA SUAREZ J, REMESAL E R, et al. Adsorption   南大学), 2019.
                 of prototypical asphaltenes on silica: First-principles DFT   [24]  QUE Y S (阙永生), YANG H (杨辉), WANG H F (汪海风), et al.
                 simulations including dispersion corrections[J]. Journal  of Physical   Preparation and in situ modification of nano-SiO 2 by sol-gel
                 Chemistry B, 2018, 122(2): 618-624.               method[J]. Inorganic Chemicals Industry (无机盐工业), 2015, 47(9):
            [9]   MONTES D, HENAO J, TABORDA E A, et al. Effect of textural   13-17.
                 properties and surface  chemical nature of silica nanoparticles from   [25]  SU R C (苏瑞彩), LI W F (李文芳), PENG J H (彭继华),  et al.
                 different silicon sources on the viscosity reduction of heavy crude   Surface modification of nano-sized SiO 2 with silane coupling agent
                 oil[J]. ACS Omega 2020, 5: 5085-5097.             and its dispersion[J].  Chemical Industry  and Engineering Progress
            [10]  TABORDA E A, ALVARADO V, FRANCO C A, et al. Rheological   (化工进展), 2009, 28(9): 1596-1599.
                 demonstration of alteration in the heavy crude oil fluid structure upon   [26]  LI W, XU Y H, ZHOU Y, et al. Silica nanoparticles functionalized via
                 addition of nanoparticles[J]. Fuel, 2017, 189: 322-333.   click chemistry and ATRP for enrichment of Pb(Ⅱ) ion[J]. Nanoscale
            [11]  JU B S, FAN T L, MA M X. Enhanced oil recovery by flooding with   Research Letters, 2012, 7(1): 1-7.
                 hydrophilic nanoparticles[J]. China Particuology, 2006, 4(1): 41-46.   [27]  LEON O, ROGEL E, ESPIDEL J,  et al. Asphaltenes:  Structural
            [12]  TABORDA E A, FRANCO C A, RUIZ M A, et al. Experimental and   characterization, self-association, and stability behavior[J]. Energy &
                 theoretical study of viscosity reduction in heavy crude oils by addition   Fuels, 2000, 14(1): 6-10.
                 of nanoparticles[J]. Energy & Fuels, 2017, 31(2): 1329-1338.   [28]  GRAY M R, TYKWINSKI R R, STRYKER J M, et al. Supramolecular
            [13]  ZARGARTALEBI  M, KHARRAT  R,  BARATI N. Enhancement of   assembly model for aggregation of petroleum asphaltenes[J]. Energy
                 surfactant flooding performance by the use of silica nanoparticles[J].   & Fuels, 2011, 25(7): 3125-3134.
                 Fuel, 2015, 143: 21-27.                       [29]  ALVAREZ-RAMIREZ F, RAMIREZ-JARAMILLO  E, RUIZ-
            [14]  JING G L, SUN  Z N, TU Z Y,  et al. Influence of different vinyl   MORALES Y. Calculation of the interaction potential curve between
                 acetate contents on the properties of the copolymer of ethylene and   asphaltene-asphaltene, asphaltene-resin, and resin-resin systems
                 vinyl acetate/modified  nano-SiO 2  composite pour-point depressant[J].   using density functional theory[J]. Energy & Fuels, 2006, 20(1):
                 Energy & Fuels, 2017, 31(6): 5854-5859.           195-204.
            [15]  ZHANG H M (张宏民). Study on synthesis and properties of nano-   [30]  CUI Q (崔青), ZHANG C  Q (张长桥), XIU J X (修建新),  et al.
                 composite viscosity reducer in heavy oil[D]. Jinan: Shangdong   Molecular dynamic simulation on the mechanism molecular dynamic
                 University (山东大学), 2015.                          simulation on the mechanism[J]. Journal of Shandong  University
            [16]  XIN G D (辛国栋). Synthesis and research of viscosity reducer for   (Engineering Science)  ( 山东大学学 报 : 工学 版 ), 2017, 47(2):
                 heavy oil nanocomposites[D]. Jinan: Shangdong University (山东大  123-130.
                 学), 2016.                                     [31]  WANG Q X (王秋霞), WANG H Y (王弘宇), ZHANG  H (张华),
            [17]  WANG Y P (王艳萍), SUN F Y (孙风跃), LIANG X Y (梁心怡),    et al. Synthesis and performance evaluation of oil-soluble heavy oil
                 et al. Structure design and structure-function relationship of emulsified   viscosity reducer containing pyridyl groups[J]. Science & Technology
                 viscosity reducers with temperature resistance and salt tolerance[J].   in Chemical Industry (化工科技), 2020, 28(4): 47-52.
                 Fine Chemicals (精细化工), 2020, 37(4): 826-833.   [32]  QING Y Q, YANG M J, LI L, et al. Effect of organically modified
            [18]  YANG S Y (杨思妍), CHEN F (陈馥), ZHOU H (周慧), et al. Study   nanosilica on the viscosity and rheological behavior of karamay
                 on synthesis of oil-base tetramer MASM viscosity reducer for the   heavy crude oil[J]. Energy & Fuels, 2020, 34(1): 65-73.
                 viscous crude oil[J]. Applied Chemical Industry (应用化工), 2011,   [33]  ESMAEELZADEH M, MORTEZAEI M, POULADVAND A.
                 40(2): 299-302.                                   Interaction of viscosity and curing kinetics of epoxy resin  in  the
            [19]  CHEN X  K (陈小凯). Preparation and laboratory evaluation of   presence of nanosilica particles[C]//The 11th International Chemical
                 copolymer of oil-soluble viscosity reducer SA/MMA/VTEO[J].   Engineering Congress & Exhibition  (IChEC 2020)  Fouman, Iran,
                 Chemical Engineer (化学工程师), 2016, 30(7): 37-40.    2020.
   189   190   191   192   193   194   195   196   197   198   199