Page 78 - 《精细化工》2021年第6期
P. 78
·1140· 精细化工 FINE CHEMICALS 第 38 卷
characterization of zirconium-based MOFs and catalytic preparation voltage electrode dielectric barrier discharge reactor: Influence of
of biodiesel[J]. Fine Chemicals (精细化工), 2020, 37(2): 248-256. reaction parameters and byproduct control[J]. International Journal of
[12] EDDAOUDI M, LI H L, YAGHI O M H. Highly porous and stable Environmental Research and Public Health, 2019, 16(5): 711-725.
metal-organic frameworks: Structure design and sorption properties[J]. [21] VLEET M J V, WENG T T, LI X Y, et al. In situ, time-resolved, and
Journal of the American Chemical Society, 2000, 122(7): 1391-1397. mechanistic studies of metal-organic framework nucleation and
[13] LIU N, HUANG W Y, TANG M Q, et al. In-situ fabrication of growth[J]. Chemical Reviews, 2018, 118(7): 3681-3721.
needle-shaped MIL-53(Fe) with 1T-MoS 2 and study on its enhanced [22] CÖLFEN H, MANN S. Higher-order organization by mesoscale
photocatalytic mechanism of ibuprofen[J]. Chemical Engineering self-assembly and transformation of hybrid nanostructures[J].
Journal, 2019, 48(8): 800-805. Angewandte Chemie International Edition, 2003, 42(21): 2350-2365.
[14] KHAN N A, JHUNG S H. Synthesis of metal-organic frameworks [23] YUAN W B, GARAY A L, PICHON A, et al. Study of the
(MOFs) with microwave or ultrasound: Rapid reaction, phase- mechanochemical formation and resulting properties of an archetypal
selectivity, and size reduction[J]. Coordination Chemistry Reviews, MOF: Cu 3(BTC) 2 (BTC=1, 3, 5-benzenetricarboxylate)[J].
2015, 285: 11-23. CrystEngComm, 2010, 12: 4063-4065.
[15] CHEN X F (陈晓菲), ZHANG W (张巍), PAN X (潘昕), et al. [24] WANG Z K, GE L, LI M R, et al. Orientated growth of copper-based
Adsorption properties of MOFs by electrochemical synthesis for MOF for acetylene storage[J]. Chemical Engineering Journal, 2019,
oxygenated VOCs[J]. Environmental Pollution & Control (环境污染 357: 320-327.
与防治), 2020, 42(7): 812-819. [25] LI Y J, MIAO J P, SUN X J, et al. Mechanochemical synthesis of
[16] VO T K, LE V N, QUANG D T, et al. Rapid defect engineering of Cu-BTC@GO with enhanced water stability and toluene adsorption
UiO-67 (Zr) via microwave-assisted continuous-flow synthesis: Effects capacity[J]. Chemical Engineering Journal, 2016, 298: 191-197.
of modulator species and concentration on the toluene adsorption[J]. [26] YANG K, XUE F, SUN Q, et al. Adsorption of volatile organic
Microporous and Mesoporous Materials, 2020, 306: 110405-110415. compounds by metal-organic frameworks MOF-177[J]. Journal of
[17] MIAO J P (苗晋朋). Cu-BTC@GO composite materials mechno- Environmental Chemical Engineering, 2013, 1: 713-718.
chemistry and forming and its adsorption performance research[D]. [27] YANG K, SUN Q, XUE F, et al. Adsorption of volatile organic
Guangzhou: South China University of Technology (华南理工大学), compounds by metal-organic frameworks MIL-101: Influence of
2015. molecular size and shape[J]. Journal of Hazardous Materials, 2011,
[18] ZHAO J J, NUNN W T, LEMAIRE P C, et al. Facile conversion of 195: 124-131.
hydroxy double salts to metal-organic frameworks using metal oxide [28] ZHANG X D, YANG Y, SONG L, et al. Enhanced adsorption
particles and atomic layer deposition thin-film templates[J]. Journal performance of gaseous toluene on defective UiO-66 metal organic
of the American Chemical Society, 2015, 137(43): 13756-13759. framework: Equilibrium and kinetic studies[J]. Journal of Hazardous
[19] ZHU M P, ZHOU K B, SUN X D, et al. Hydrophobic N-doped Materials, 2019, 365: 597-605.
porous biocarbon from dopamine for high selective adsorption of [29] ZHANG H Y, SHI R H, FAN H L, et al. Defect creation by benzoic
p-xylene under humid conditions[J]. Chemical Engineering Journal, acid in Cu-based metal-organic frameworks for enhancing sulfur
2017, 317: 660-672. capture[J]. Microporous and Mesoporous Materials, 2020, 298: 110070.
[20] LI J X, ZHANG H B, YING D W, et al. In plasma catalytic oxidation [30] YANG R T. Adsorbents: Fundamentals and applications[M]. New
of toluene using monolith CuO foam as a catalyst in a wedged high Jersey: John Wiley & Sons Inc, 2003.
(上接第 1134 页) [12] SUZUKI A, TANAKA T. Phase transition in polymer gels induced
by visible light[J]. Letter to Nature , 1990, 346(26): 345-347.
[3] HUANG X, MUTLU H, LIN S J, et al. Oxygen-switchable thermo- [13] WEBER C, HOOGENBOOM R, SCHUBERT U S. Temperature
responsive polymers with unprecedented UCST in water[J]. European responsive bio-compatible polymers based on poly(ethylene oxide)
Polymer Journal, 2021, 142: 110156-110162. and poly(2-oxazoline)s[J]. Progress in Polymer Science, 2012, 37(5):
[4] BANERJEE P, JANA S, MANDAL T K. Coulomb interaction-driven 686-714.
UCST in poly(ionic liquid) random copolymers[J]. European Polymer [14] ISHIZONE T, SEKI A, HAGIWARA M, et al. Anionic polymerizations
Journal, 2020, 133: 109747-109759. of oligo(ethylene glycol) alkyl ether methacrylates: Effect of side chain
[5] SUN W H, AN Z S, WU P Y. UCST or LCST? Composition-dependent length and ω-alkyl group of side chain on cloud point in water[J].
thermoresponsive behavior of poly(N-acryloylglycinamide-co- Macromolecules, 2008, 41(8): 2963-2967.
diacetone acrylamide)[J]. Macromolecules, 2017, 50(5): 2175-2182. [15] TAYLOR L D, CERANKOWSKI L D. Preparation of films exhibiting
[6] ZOU Y Q, BROOKS D E, KIZHAKKEDATHU J N. A novel a balanced temperature dependence to permeation by aqueous
functional polymer with tunable LCST[J]. Macromolecules, 2008, solutions-A study of lower consolute behavior[J]. Journal of Polymer
41(14): 5393-5405. Science Polymer Chemistry Edition, 1975, 13(11): 2551-2570.
[7] SCHIL H G. Poly(N-isopropylacrylamide): Experiment, theory and [16] WANG Y, FENG Y J, WANG B Q, et al. A novel thermoviscosifying
application[J]. Progress Polymer in Polymer Science, 1992, 17: 163-249. water-soluble polymer: Synthesis and aqueous solution properties[J].
[8] CARTER S, RIMMER S, RUTKAITE R, et al. Highly branched Journal of Applied Polymer Science, 2010, 116(6): 3516-3524.
poly(N-isopropylacrylamide) for use in protein purification[J]. [17] GUO Y J (郭拥军), DAI G (代刚), FENG R S (冯茹森), et al. Studies
Biomacromolecules, 2006, 7(4): 1124-1130. on the synthesis and thermal-induced association behaviors of
[9] MEEUSSEN F, NIES E, BERGHMANS H, et al. Phase behaviour of thermosensitive poly(N,N-dimethylacrylamide-co-diacetone acrylamide)
poly(N-vinyl caprolactam) in water[J]. Polymer, 2000, 41(24): 8597- [J]. Acta Polymerica Sinica (高分子学报), 2016, (7): 871-879.
8620. [18] HAN D H, TONG X, BOISSERE O, et al. General strategy for CO 2-
[10] PRINCIPI T, GOH C C E, WINNIK F M, et al. Solution properties switchable polymer[J]. ACS Macro Letters, 2012, 1: 57-61.
of hydrophobically modified copolymers of N-isopropylacrylamide and [19] LIN S J, THEATO P. CO 2-responsive polymers[J]. Macromolecular
N-glycine acrylamide: A study by microcalorimetry and fluorescence Rapid Communications, 2013, 34(14): 1118-1133.
spectroscopy[J]. Macromolecules, 2000, 33 (8): 2958-2966. [20] WANG Y (王毓), ZHAO J (赵君), REN J P (任俊鹏), et al. Synthesis
[11] LIU H Y, ZHU X X. Lower critical solution temperatures of and properties of temperature sensitive water-soluble polymer with
N-substituted acrylamide copolymers in aqueous solutions[J]. Polymer, CO 2 regulated LCST[J]. Materials Reports ( 材料导报 ), 2020,
1999, 40(25): 6985-6990. 34(72): 1516-1520.